روبرت كينيدي: ثورة صحية طال انتظارها
تاريخ النشر: 3rd, March 2025 GMT
تولي روبرت إف. كينيدي جونيور (RFK Jr.)، منصب وزير الصحة والخدمات الإنسانية في 20 يناير 2025، ضمن إدارة دونالد ترامب يمثل نقطة تحول تاريخية للرعاية الصحية الأمريكية والعالمية. كينيدي، بصفته صوتًا قويًا ضد هيمنة شركات الأدوية، يقدم رؤية ملهمة تعتمد على المكملات الغذائية (neutraceuticals)، كبديل للأدوية الصيدلانية التقليدية (pharmaceuticals)، وإزالة الفلورايد من مياه الشرب، وهي خطوات تعكس التزامًا حقيقيًا بصحة الإنسان بعيدًا عن مصالح الشركات الكبرى.
المصدر: صحيفة البلاد
إقرأ أيضاً:
ثورة علمية.. الذكاء الاصطناعي يحل لغزا حيّر العلماء لأكثر من مئة عام
#سواليف
حلّ فريق من #العلماء في الولايات المتحدة لغزا عمره أكثر من مئة عام باستخدام #الذكاء_الاصطناعي، ما قد يمهّد الطريق ويفتح الآفاق لإنجازات تقنية متقدمة.
وتمكن علماء كلية كولومبيا للهندسة في نيويورك من تحديد البنية الذرية الدقيقة لما يُعرف بالبلورات النانوية، وهي جزيئات بالغة الصغر تُستخدم في مجالات متعددة تشمل تصنيع الإلكترونيات وتطوير مواد جديدة، وحتى تحليل القطع الأثرية في علم الآثار.
وتتمثل أهمية هذا الاكتشاف في أن #البلورات_النانوية، لصغر حجمها وافتقارها إلى الترتيب المنتظم، كانت تمثّل تحديا كبيرا أمام العلماء الذين اعتمدوا لعقود على تقنيات حيود #الأشعة_السينية لتحليل تركيب المواد الصلبة، حيث تُسلّط الأشعة على بلورات كبيرة ومنتظمة فيُنتج نمط يظهر ترتيب الذرات داخل المادة. لكن هذه الطريقة تفشل مع البلورات النانوية، لأنها صغيرة وغير منتظمة وتُشتّت الأشعة إلى أنماط غير واضحة يصعب تفسيرها.
مقالات ذات صلة موظف سابق في مايكروسوفت: الشركة تهتم بالربح المادي على حساب الدم الفلسطيني 2025/04/25وللتغلب على هذا التحدي، ابتكر فريق البحث خوارزمية ذكاء اصطناعي متقدمة أُطلق عليها اسم PXRDnet، دُربت على تحليل أنماط حيود معقدة باستخدام قاعدة بيانات ضخمة تحتوي على عشرات الآلاف من التركيبات البلورية المعروفة. ورغم أن هذه التركيبات ليست مرتبطة مباشرة بالبلورات النانوية قيد الدراسة، فإن الخوارزمية نجحت في تعلّم الأنماط المحتملة لترتيب الذرات في هذه المواد النانوية.
وقال البروفيسور سيمون بيلينغ، أستاذ علوم المواد والفيزياء والرياضيات التطبيقية في جامعة كولومبيا: “استطاع الذكاء الاصطناعي حل هذه المشكلة المعقدة من خلال تعلم أنماط الترتيب الذري التي تسمح بها الطبيعة، حتى دون توفر معرفة فيزيائية مباشرة بالمواد المدروسة”.
وتعمل خوارزمية PXRDnet على تحليل أنماط الحيود الناتجة عن بلورات نانوية يصل حجمها إلى 10 أنغستروم فقط، أي أرقّ بنحو عشرة آلاف مرة من شعرة الإنسان، ما يفتح آفاقا لفهم المواد على مستوى بالغ الدقة.
واعتبر العلماء هذا التطور نقلة نوعية في علم المواد، لأنه يتيح تحديد بنية المواد النانوية بدقة عالية دون الحاجة إلى بلورات كبيرة أو أدوات باهظة الثمن.
وقال غابي غو، قائد الفريق البحثي: “حين كنت في المدرسة الإعدادية، كانت أنظمة الذكاء الاصطناعي لا تزال تكافح لتمييز القطط من الكلاب. أما اليوم، فها نحن نستخدمها لحل مشكلات علمية معقدة كانت مستعصية على البشر لعقود”.
وأضاف البروفيسور هود ليبسون، رئيس قسم الهندسة الميكانيكية بجامعة كولومبيا:
“المثير للدهشة هو أن الذكاء الاصطناعي، رغم افتقاره إلى فهم مباشر للفيزياء أو الهندسة، تمكّن من التوصل إلى حل لمعضلة حيرت العلماء لأكثر من مئة عام. وهذا يعطي لمحة عمّا يمكن أن يقدمه الذكاء الاصطناعي في مجالات علمية أخرى تواجه تحديات مماثلة”.