لطيفة تعلن أول أغنية لها بالذكاء الاصطناعي
تاريخ النشر: 21st, June 2024 GMT
تابع أحدث الأخبار عبر تطبيق
نشرت الفنانة لطيفة على صفحتها الشخصية على موقع تبادل الصور والفيديو "إنستجرام"، البرومو الدعائى لها من أغنيتها الجديدة “يا ليالي”، والتى جاءت بخاصية الذكاء الإصطناعي لتشارك بها جمهورها.
https://www.instagram.com/reel/C8eZTpmM9gO/?igsh=YnJydG84a204ZzV6
وعلقت على البرومو الدعائى للأغنية "إحنا إللى الدنيا بتتهد وترقص على خطوتنا ومادام غنينا مفيش حد على الأرض يسكتنا".
وتابعت لطيفة "يا حبايبي ده تيزر من أول الاغاني اللى نفذناها بتقنية الذكاء الإصطناعي، مع المخرج الكبير وليد ناصيف ويارب تعجبكم".
واضافت"واستنونا قريباً فى البوم مفيش ممنوع قريبا على قناتى على اليوتيوب وكل المنصات الموسيقية".
أغنية "يا ليالي" من كلمات الشاعر ملاك عادل، وتوزيع تميم، والألحان محمد حسن.
يشار أن الفنانة لطيفة تنتظر طرح الألبوم الغنائي الجديد لها "مفيش ممنوع"، والمنتظر طرحه على كل منصات الإستماع خلال الأيام القليلة المقبلة.
المصدر: البوابة نيوز
كلمات دلالية: لطيفة الذكاء الاصطناعي أغنية يا ليالي مفيش ممنوع الفنانة لطيفة
إقرأ أيضاً:
ثورة في توليد الصور بالذكاء الاصطناعي.. أداة جديدة أسرع 9 مرات وتعمل على هاتفك
تمكن باحثون من معهد ماساتشوستس للتكنولوجيا (MIT) وشركة NVIDIA من تطوير أداة جديدة لتوليد الصور تعتمد على الذكاء الاصطناعي، تمتاز بسرعة فائقة وجودة عالية مع استهلاك أقل للطاقة، ويمكن تشغيلها محليًا على أجهزة الحاسوب المحمولة أو الهواتف الذكية.
الأداة الجديدة التي تحمل اسم HART (اختصارًا لـ Hybrid Autoregressive Transformer) تمثل دمجًا مبتكرًا بين تقنيتين شائعتين في هذا المجال: النماذج التوليدية التسلسلية (autoregressive) ونماذج الانتشار (diffusion). حيث تعتمد HART على النموذج التسلسلي لرسم الصورة بشكل سريع وإجمالي، ثم تستخدم نموذج الانتشار صغير الحجم لتوضيح التفاصيل الدقيقة وتحسين جودة الصورة.
اقرأ أيضاً.. الذكاء الاصطناعي يهدد مستقبل التصوير الفوتوغرافي
السرعة والكفاءة
وتتميز HART بقدرتها على إنتاج صور تضاهي أو تتفوق على الصور التي تولدها نماذج الانتشار المتقدمة، لكنها تفعل ذلك بسرعة أكبر بنحو تسع مرات، مع تقليل استهلاك الموارد الحاسوبية بنسبة تصل إلى 31% مقارنةً بأحدث النماذج. ويكفي أن يدخل المستخدم وصفًا نصيًا بسيطًا لتقوم الأداة بتوليد الصورة المطلوبة.
ويُتوقع أن تفتح هذه التقنية آفاقًا واسعة في عدة مجالات، مثل تدريب السيارات الذاتية القيادة في بيئات افتراضية واقعية، وتصميم مشاهد غنية لألعاب الفيديو، وحتى مساعدة الروبوتات على إتمام مهام معقدة في العالم الحقيقي.
يقول الباحث هاوتيان تانغ، المؤلف المشارك في الدراسة: "تمامًا كما يرسم الفنان لوحة من خلال تحديد الشكل العام أولًا، ثم يعود لإضافة التفاصيل الدقيقة بضربات فرشاة صغيرة، هذا ما تفعله HART بالضبط".
أخبار ذات صلة
تحسين الجودة
وقد واجه الباحثون تحديات أثناء تطوير الأداة، خاصة في كيفية دمج نموذج الانتشار بطريقة تكمّل عمل النموذج التسلسلي دون أن تؤدي إلى تراكم الأخطاء. وخلصوا إلى أن أفضل طريقة هي استخدام نموذج الانتشار فقط في المرحلة النهائية لمعالجة التفاصيل الدقيقة.
ومن أبرز ما يميز HART أنها تعتمد بشكل أساسي على نموذج تسلسلي مشابه للنماذج اللغوية الكبيرة (LLMs) مثل ChatGPT، مما يسهل دمجها مستقبلاً مع نماذج توليدية متعددة الوسائط تجمع بين الرؤية واللغة، وهو ما يمهد الطريق لتطبيقات جديدة مثل شرح خطوات تركيب قطعة أثاث بالصوت والصورة.
مستقبل HART
ويطمح الفريق البحثي إلى تطوير HART مستقبلًا ليشمل مجالات أوسع مثل توليد الفيديوهات والتنبؤ بالأصوات، مستفيدين من قابلية الأداة للتوسع والعمل عبر وسائط متعددة.
وقد تم تمويل هذا البحث من قبل عدة جهات منها مختبر MIT-IBM Watson للذكاء الاصطناعي، ومركز MIT وAmazon Science Hub، وبرنامج MIT لتقنيات الذكاء الاصطناعي، ومؤسسة العلوم الوطنية الأمريكية، كما تبرعت NVIDIA بالبنية التحتية اللازمة لتدريب النموذج.
إسلام العبادي(أبوظبي)