أبل تدخل عالم الذكاء الاصطناعي
تاريخ النشر: 11th, June 2024 GMT
الاقتصاد نيوز - متابعة
كشفت أبل عن استراتيجية الذكاء الاصطناعي التي طال انتظارها، إذ دمجت أدوات تستند إلى هذه التكنولوجيا تحت اسم "أبل إنتليجنس" عبر مجموعة تطبيقاتها بما في ذلك المساعد الصوتي (سيري)، وأعلنت عن شراكة مع أوبن إيه.آي لدمج تطبيق (تشات جي.بي.تي) في أجهزتها.
وتسعى الشركة المصنعة لهواتف آيفون من خلال هذه الخطوات إلى أن تؤكد للمستثمرين أنها لم تخسر معركة الذكاء الاصطناعي أمام مايكروسوفت على الرغم من أنها قد تكون قد خسرت بضع جولات.
وأعلنت أبل عن ميزات الذكاء الاصطناعي هذه في مؤتمر المطورين العالمي، إلى جانب أحدث نظام تشغيل لأجهزتها.
وستسمح هذه الميزات للمستخدمين بتلخيص النصوص وإنشاء محتوى آخر، مثل الرسوم المتحركة المخصصة لأمور منها على سبيل المثال تمني عيد ميلاد سعيد لصديق.
وقالت أبل أيضا إن دمج (تشات جي.بي.تي) في أجهزتها سيكون متاحا في وقت لاحق من هذا العام وستتبعه ميزات الذكاء الاصطناعي الأخرى، مضيفة أنه يمكن الوصول إلى روبوت الدردشة الذائع الصيت مجانا ولن يتم تسجيل معلومات المستخدمين.
وقال المدير التنفيذي للشركة كريغ فيديريغي أثناء تقديمه لعملية دمج (تشات جي.بي.تي) "نريدكم أن تكونوا قادرين على استخدام هذه النماذج الخارجية دون الحاجة إلى التنقل بين الأدوات المختلفة".
وكشفت الشركة أيضا عن تحديث (سيري) بتقنية الذكاء الاصطناعي التوليدي لمنح المساعد الصوتي القدرة على التحكم في ميزات التطبيق الفردية.
هذا يعني أن (سيري) يمكنه الآن حذف رسائل البريد الإلكتروني وتحرير الصور لمستخدمي آيفون، وهي تحديثات أثبتت صعوبتها في الماضي حيث يحتاج المساعد إلى فهم نوايا المستخدم الدقيقة وكذلك كيفية عمل التطبيق.
وسيستفيد (سيري) أيضا من خبرة (تشات جي.بي.تي) ويطلب الإذن من المستخدمين قبل الاستعلام عن خدمة "أوبن إيه.آي".
وأكدت أبل أنها قامت ببناء ذكاء اصطناعي "في جوهره" الخصوصية وأنها ستستخدم مزيجا من المعالجة على الجهاز والحوسبة السحابية لتشغيل ميزات الذكاء الاصطناعي الخاصة بها.
ولتحقيق ذلك، تخطط أبل لاستخدام شرائحها الخاصة للمساعدة في تشغيل ميزات الذكاء الاصطناعي على أجهزتها.
المصدر: وكالة الإقتصاد نيوز
كلمات دلالية: كل الأخبار كل الأخبار آخر الأخـبـار میزات الذکاء الاصطناعی تشات جی بی تی
إقرأ أيضاً:
الدماغ البشري يتفوّق على الذكاء الاصطناعي في حالات عدّة
لا شك أن أنظمة الذكاء الاصطناعي قد حققت إنجازات مذهلة، بدءًا من إتقان الألعاب وكتابة النصوص وصولًا إلى توليد الصور ومقاطع الفيديو المقنعة.
وقد دفع ذلك البعض إلى الحديث عن إمكانية أن نكون على أعتاب الذكاء الاصطناعي العام (AGI)، وهو نظام ذكاء اصطناعي يمتلك قدرات معرفية شاملة تشبه قدرات الإنسان.
في حين أن بعض هذا الحديث ما هو إلا ضجة إعلامية، إلا أن عددًا كافيًا من الخبراء في هذا المجال يأخذون الفكرة على محمل الجد، مما يستدعي إلقاء نظرة فاحصة عليها.
تحديات تعريف الذكاء الاصطناعي العامتدور العديد من النقاشات حول مسألة كيفية تعريف الذكاء الاصطناعي العام، وهو أمر يبدو أن الخبراء في هذا المجال لا يتفقون عليه.
ويساهم هذا في ظهور تقديرات متباينة حول موعد ظهوره، تتراوح بين "إنه موجود عمليًا" إلى "لن نتمكن أبدًا من تحقيقه". وبالنظر إلى هذا التباين، يستحيل تقديم أي نوع من المنظور المستنير حول مدى قربنا من تحقيقه.
لكن لدينا مثال موجود على الذكاء العام بدون "الاصطناعي" - وهو الذكاء الذي يوفره دماغ الحيوان، وخاصة الدماغ البشري.
ومن الواضح أن الأنظمة التي يتم الترويج لها كدليل على أن الذكاء الاصطناعي العام قاب قوسين أو أدنى لا تعمل على الإطلاق مثل الدماغ. قد لا يكون هذا عيبًا قاتلًا، أو حتى عيبًا على الإطلاق. من الممكن تمامًا أن يكون هناك أكثر من طريقة للوصول إلى الذكاء، اعتمادًا على كيفية تعريفه.
لكن من المحتمل أن تكون بعض الاختلافات على الأقل مهمة من الناحية الوظيفية، وحقيقة أن الذكاء الاصطناعي يسلك مسارًا مختلفًا تمامًا عن المثال العملي الوحيد الذي لدينا من المرجح أن يكون ذا مغزى.
مع وضع كل ذلك في الاعتبار، دعونا نلقي نظرة على بعض الأشياء التي يقوم بها الدماغ والتي لا تستطيع أنظمة الذكاء الاصطناعي الحالية القيام بها.
أشارت أرييل جولدشتاين، الباحثة في الجامعة العبرية في القدس، إلى أن أنظمة الذكاء الاصطناعي الحالية "مجزأة" في قدراتها. فقد تكون جيدة بشكل مدهش في شيء ما، ثم سيئة بشكل مدهش في شيء آخر يبدو مرتبطًا به.
وأكدت عالمة الأعصاب كريستا بيكر من جامعة ولاية كارولينا الشمالية على هذه النقطة، مشيرة إلى أن البشر قادرون على تطبيق المنطق في مواقف جديدة دون الحاجة إلى إعادة تعلم كل شيء من الصفر.
ذكر ماريانو شاين، مهندس جوجل الذي تعاون مع جولدشتاين، أن أنظمة الذكاء الاصطناعي تفتقر إلى الذاكرة طويلة المدى والمخصصة للمهام، وهي القدرة على نشر المهارات المكتسبة في مهمة ما في سياقات مختلفة.
أشارت بيكر إلى وجود تحيز نحو تفضيل السلوكيات الشبيهة بالسلوك البشري، مثل الردود التي تبدو بشرية والتي تولدها نماذج اللغات الكبيرة.
في المقابل، يمكن لذبابة الفاكهة، بدماغها الذي يحتوي على أقل من 150 ألف خلية عصبية، دمج أنواع متعددة من المعلومات الحسية، والتحكم في أربعة أزواج من الأطراف، والتنقل في بيئات معقدة، وتلبية احتياجاتها من الطاقة، وإنتاج أجيال جديدة من الأدمغة، وأكثر من ذلك.
الاختلافات الرئيسية بين الدماغ البشري والذكاء الاصطناعيتستند معظم أنظمة الذكاء الاصطناعي الحالية، بما في ذلك جميع نماذج اللغات الكبيرة، على ما يسمى بالشبكات العصبية.
تم تصميم هذه الشبكات لتقليد كيفية عمل بعض مناطق الدماغ، مع وجود أعداد كبيرة من الخلايا العصبية الاصطناعية التي تأخذ مدخلات وتعدلها ثم تمرير المعلومات المعدلة إلى طبقة أخرى من الخلايا العصبية الاصطناعية. لكن هذا التقليد محدود للغاية.
فالخلايا العصبية الحقيقية متخصصة للغاية، وتستخدم مجموعة متنوعة من الناقلات العصبية وتتأثر بعوامل خارج الخلايا العصبية مثل الهرمونات. كما أنها تتواصل من خلال سلسلة من النبضات المتغيرة في التوقيت والشدة، مما يسمح بدرجة من الضوضاء غير الحتمية في الاتصالات.
تهدف الشبكات العصبية التي تم إنشاؤها حتى الآن هي إلى حد كبير أنظمة متخصصة تهدف إلى التعامل مع مهمة واحدة.
في المقابل، يحتوي الدماغ النموذجي على الكثير من الوحدات الوظيفية التي يمكنها العمل بالتوازي، وفي بعض الحالات دون أي نشاط تحكمي يحدث في مكان آخر في الدماغ.
تمتلك أنظمة الذكاء الاصطناعي الحالية عمومًا حالتين: التدريب والنشر. التدريب هو المكان الذي يتعلم فيه الذكاء الاصطناعي سلوكه؛ النشر هو المكان الذي يتم فيه استخدام هذا السلوك.
في المقابل، لا يحتوي الدماغ على حالات تعلم ونشاط منفصلة؛ إنه في كلا الوضعين باستمرار، بينما في كثير من الحالات، يتعلم الدماغ أثناء العمل.
بالنسبة للعديد من أنظمة الذكاء الاصطناعي، لا يمكن تمييز "الذاكرة" عن الموارد الحسابية التي تسمح لها بأداء مهمة والاتصالات التي تم تشكيلها أثناء التدريب. في المقابل، تمتلك الأنظمة البيولوجية عمرًا من الذكريات للاعتماد عليها.
القيود والتحدياتمن الصعب التفكير في الذكاء الاصطناعي دون إدراك الطاقة الهائلة والموارد الحسابية المستخدمة في تدريبه. لقد تطورت الأدمغة في ظل قيود هائلة على الطاقة وتستمر في العمل باستخدام طاقة أقل بكثير مما يمكن أن يوفره النظام الغذائي اليومي.
وقد أجبر هذا علم الأحياء على إيجاد طرق لتحسين موارده والاستفادة القصوى من تلك التي يخصصها لمهمة ما.
في المقابل، فإن قصة التطورات الحديثة في الذكاء الاصطناعي هي إلى حد كبير قصة رمي المزيد من الموارد عليها.
ويبدو أن خطط المستقبل (حتى الآن على الأقل) تشمل المزيد من هذا، بما في ذلك مجموعات بيانات تدريب أكبر وعدد أكبر من الخلايا العصبية الاصطناعية والوصلات بينها.
كل هذا يأتي في وقت تستخدم فيه أفضل أنظمة الذكاء الاصطناعي الحالية بالفعل ثلاثة أضعاف الخلايا العصبية التي نجدها في دماغ ذبابة الفاكهة وليس لديها أي مكان قريب من القدرات العامة للذبابة.