الذكاء الاصطناعي في طريقه ليصبح أكثر ذكاءً من البشر.. ما هو مصيرنا؟
تاريخ النشر: 9th, April 2024 GMT
شمسان بوست / متابعات:
نعيش في عالم تزداد فيه سيطرة الذكاء الاصطناعي على حياتنا يومًا تلو الآخر، الأمر الذي جعل الرئيس التنفيذي لشركة تسلا “إيلون ماسك ” يتوقع بأن الذكاء الاصطناعي المطور سيكون أكثر ذكاءً من أذكى إنسان ربما بحلول العام المقبل، أو بحلول عام 2026.
وقد دخل ماسك إلى سوق الذكاء الاصطناعي بشركة منافسة، فقال خلال لقاء له وعبر حسابه على إكس:” أن الذكاء الاصطناعي كان مقيدًا بتوفر الكهرباء وأن الإصدار التالي من Grok، برنامج الدردشة الآلي الذي يعمل بالذكاءالاصطناعي من شركته الناشئة xAI، كان ومن المتوقع أن يتم تدريبه بحلول شهر مايو”.
وأضاف ماسك عندما سئل عن الجدول الزمني لتطوير AGI: “إذا قمت بتعريف AGI الذكاء العام الاصطناعي فهو أكثر ذكاءً من أذكى إنسان، واعتقد أنه من المحتمل أن يكون ذلك في العام المقبل، أو في غضون عامين”.
وأكمل الملياردير، الذي شارك أيضًا في تأسيس OpenAI، إن الافتقار إلى الرقائق المتقدمة يعيق تدريب نموذج الإصدار الثاني من Grok.
أسس ماسك شركة xAI العام الماضي كمنافس لشركة OpenAI، التي رفع دعوى قضائية ضدها لتخليها عن مهمتها الأصلية لتطويرالذكاء الاصطناعي لصالح البشرية وليس من أجل الربح، وتنفي OpenAI هذه المزاعم.
وقال ماسك إن تدريب نموذج Grok 2 استغرق حوالي 20 ألف شريحة Nvidia (NVDA.O)، ويفتح علامة تبويب جديدة لوحدات معالجةالرسوميات H100، مضيفًا أن نموذج Grok 3 وما بعده سيتطلب 100000 شريحة Nvidia H100.
لكنه أضاف أنه على الرغم من أن النقص في الرقائق كان عائقًا كبيرًا أمام تطوير الذكاء الاصطناعي حتى الآن، إلا أن إمدادات الكهرباءستكون حاسمة في العام أو العامين المقبلين.
وفي حديثه عن السيارات الكهربائية، أكد ماسك أن شركات صناعة السيارات الصينية هي “الأكثر قدرة على المنافسة في العالم” وتشكل أصعب التحديات التنافسية لشركة تسلا.
المصدر: شمسان بوست
كلمات دلالية: الذکاء الاصطناعی
إقرأ أيضاً:
هل يستطيع الذكاء الاصطناعي أن يكون طوق النجاة للمحتاجين؟
نشرت مجلة نيتشر العلمية تقريراً حديثاً يستعرض كيف يمكن للذكاء الاصطناعي أن يكون أداة فعالة في مكافحة الفقر حول العالم، وذلك من خلال تحليل البيانات وتحديد المستحقين للمساعدات بطرق أكثر دقة وسرعة من الأساليب التقليدية.
في أواخر عام 2020، خلال جائحة كوفيد-19، تلقى عشرات الآلاف من القرويين الفقراء في توغو مساعدات مالية مباشرة عبر هواتفهم المحمولة، بفضل نظام ذكاء اصطناعي مبتكر. تم تحويل حوالي 10 دولارات كل أسبوعين إلى حساباتهم الرقمية، وهي مبالغ قد تبدو صغيرة، لكنها ساعدت العديد منهم على تلبية احتياجاتهم الأساسية وتجنب الجوع.
اقرأ أيضاً.. هل يشيخ الذكاء الاصطناعي كالبشر؟ خفايا التقادم الرقمي
كيف يعمل الذكاء الاصطناعي في تحديد الفقراء؟
اعتمدت حكومة توغو، بالتعاون مع علماء من جامعة كاليفورنيا في بيركلي ومنظمة GiveDirectly غير الربحية، على الذكاء الاصطناعي لتحليل صور الأقمار الصناعية وبيانات شبكات الهواتف المحمولة لتقدير مستوى الدخل والفقر في مناطق مختلفة. وبدلاً من استخدام المسوحات الميدانية التقليدية التي تستغرق وقتاً طويلاً وتحتاج إلى موارد ضخمة، استطاع النظام الجديد تحديد الأشخاص الأكثر حاجة بسرعة ودقة أكبر.
وفقاً للمجلة، فإن هذا النهج ساعد في التغلب على تحديات مثل عدم توفر بيانات دقيقة عن الفقراء، وهي مشكلة تواجه الحكومات والمنظمات الإنسانية عند توزيع المساعدات.
هل يمكن للذكاء الاصطناعي أن يحل محل الطرق التقليدية؟
حالياً، يعيش نحو 700 مليون شخص حول العالم في فقر مدقع، حيث يحصلون على أقل من 2.15 دولار يومياً وفقاً للبنك الدولي. ومع ذلك، يواجه قياس الفقر وتوزيع المساعدات مشكلات عديدة، منها التكاليف العالية لجمع البيانات وعدم شمول بعض الفئات مثل المشردين أو الأشخاص الذين لا يملكون هواتف محمولة.
يقول الباحث جوشوا بلومنستوك، المتخصص في علوم الكمبيوتر بجامعة كاليفورنيا في بيركلي، إن الذكاء الاصطناعي يمكن أن يساعد في التغلب على هذه المشكلات عبر تحليل كميات هائلة من البيانات بسرعة فائقة، مما يجعل عملية تحديد المستفيدين من المساعدات أكثر كفاءة.
من جهة أخرى، يُحذر خبراء مثل أولا هال، الباحث في جامعة لوند في السويد، من أن الذكاء الاصطناعي ليس مثالياً، فقد تعاني بعض النماذج من التحيز أو عدم الدقة، مما قد يؤدي إلى استبعاد بعض الأشخاص المستحقين للمساعدة.
كيف تطور قياس الفقر عبر الزمن؟
تاريخياً، حاول الباحثون تطوير معايير لقياس الفقر منذ أواخر القرن التاسع عشر. على سبيل المثال، في عام 1901، أجرى عالم الاجتماع البريطاني سيبوم راونتري دراسة ميدانية حول الفقر في مدينة يورك بالمملكة المتحدة، حيث تم تحديد الفقر بناءً على قدرة الأسر على تلبية الحد الأدنى من الاحتياجات الغذائية.
لاحقاً، في عام 1964، اعتمدت الولايات المتحدة مقياس الفقر الرسمي الذي حدد الحد الأدنى من الدخل اللازم لتغطية الطعام والمسكن والنفقات الأساسية، وهو ما تبنته أيضاً دول مثل الهند.
لكن هذه المقاييس لم تعكس الواقع المعقد للفقر، حيث إن امتلاك دخل معين لا يعني بالضرورة القدرة على تأمين الصحة، التعليم، أو المياه النظيفة. ولهذا السبب، طورت الباحثة سابينا ألكاير بالتعاون مع جيمس فوستر ما يُعرف بمؤشر الفقر متعدد الأبعاد MPI عام 2008، والذي يقيس الفقر بناءً على عشرة عوامل مختلفة، مثل التغذية، التعليم، وسهولة الوصول إلى مياه الشرب.
اقرأ أيضاً.. عندما تتحدث الأرض.. هل يمكن للذكاء الاصطناعي التنبؤ بالزلازل؟
هل الذكاء الاصطناعي هو الحل؟
مع التقدم في تقنيات الذكاء الاصطناعي، بدأ الباحثون في استخدام صور الأقمار الصناعية وتحليل البيانات الرقمية لتحديد الفقر بشكل أكثر دقة. على سبيل المثال، أظهرت دراسة أجرتها جامعة ستانفورد عام 2016 أن الذكاء الاصطناعي يمكنه التنبؤ بمعدلات الفقر بدقة مماثلة للمسوحات الميدانية التقليدية، ولكن بتكلفة أقل وبسرعة أكبر.
تتوسع هذه التجارب حالياً، حيث يتم تحليل بيانات الهاتف المحمول، حركة المرور، والإضاءة الليلية لتحديد المناطق الأكثر فقراً، ما يسمح للحكومات والمنظمات الإنسانية بتوجيه المساعدات بشكل أكثر كفاءة.
هل نحن مستعدون للاعتماد على الذكاء الاصطناعي بالكامل؟
رغم الإمكانات الكبيرة التي يوفرها الذكاء الاصطناعي في مكافحة الفقر، إلا أن هناك تحديات يجب معالجتها، مثل ضمان العدالة في توزيع المساعدات، حماية البيانات الشخصية، وتجنب التحيزات الخوارزمية التي قد تؤثر على دقة التحديد.
في نهاية التقرير، تشير مجلة نيتشر إلى أن استخدام الذكاء الاصطناعي في مكافحة الفقر لا يزال في مراحله الأولى، لكن التجارب مثل مشروع توغو تثبت أنه يمكن أن يكون أداة قوية وفعالة إذا تم استخدامه بطريقة مدروسة ومنصفة.
إسلام العبادي(أبوظبي)