السفير الفرنسي بالقاهرة: مصر محور صناعي وتصديري رئيسي بالشرق الأوسط وقارة أفريقيا
تاريخ النشر: 7th, April 2024 GMT
تابع أحدث الأخبار عبر تطبيق
التقى المهندس أحمد سمير، وزير التجارة والصناعة ، مع ايريك شوفالييه ، سفير فرنسا بالقاهرة والوفد المرافق له حيث استعرض الجانبان أوجه التعاون الاقتصادي المشترك بين البلدين، وسبل تعزيز العلاقات الثنائية بين القاهرة وباريس في مجالات التجارة والصناعة والاستثمار ، حضر اللقاء الوزير مفوض تجاري يحيي الواثق بالله رئيس التمثيل التجاري.
وقال الوزير أن اللقاء تناول سبل الاستفادة من المقومات الاقتصادية الكبيرة لكلا البلدين وترجمتها لمشروعات تعاون ملموسة تصب في مصلحة الاقتصادين المصري والفرنسي على حد سواء، مشيراً الى أن هناك فرصاً كبيرة لتعزيز العلاقات الاقتصادية بين البلدين على المستويين الثنائي ومتعدد الأطراف في إطار اتفاقية الشراكة المصرية الأوروبية.
وأكد سمير حرص الوزارة على الاستفادة من الخبرات الصناعية الكبيرة لدولة فرنسا في توطين عدد من الصناعات التي تستهدفها الوزارة لاسيما قطاعات الصناعات الدوائية والبتروكيماويات وصناعة السيارات والصناعات المغذية لها وذلك لتوفير احتياجات الصناعة المصرية والوفاء باحتياجات السوق المحلى والتصدير للأسواق الخارجية.
ولفت الوزير الى أهمية استفادة دوائر الاعمال الفرنسية من فرص ومميزات الاستثمار بالسوق المصري لاسيما إمكانيات النفاذ الحر للمنتجات المصنعة في مصر لأسواق دول القارة الافريقية في اطار اتفاقية التجارة الحرة القارية الافريقية AFCFTA ، وكذا الاستفادة من خط النقل البحري السريع بين مصر وإيطاليا والذي يسهم في تسهيل حركة التبادل التجاري بين مصر ودول القارة الأوروبية، الى جانب الاستفادة من طريق القاهرة- كيب تاون والذي يتيح إمكانيات الوصول للأسواق الافريقية خاصة اسواق الدول الحبيسة، مشيراً الى ان الحكومة المصرية توفر خلال الفترة الحالية حزم حوافز غير مسبوقة للمستثمرين تشمل تيسيرات إجرائية وتخفيضات سعرية على الأراضي الصناعية واعفاءات ضريبية الى جانب التوسع في منح الرخصة الذهبية.
ومن جانبه أكد السيد ايريك شوفالييه سفير فرنسا بالقاهرة حرص بلاده على تعزيز أواصر التعاون الاقتصادي المشترك مع مصر باعتبارها محور صناعي وتصديري رئيسي بمنطقة الشرق الأوسط وقارة افريقيا، مشيراً الى أن العام الجاري سيشهد عقد العديد من الفعاليات المشتركة بين البلدين والتي من شأنها دفع العلاقات الاقتصادية بين فرنسا مصر لمستويات متميزة.
المصدر: البوابة نيوز
كلمات دلالية: الاستفادة من
إقرأ أيضاً:
كيف تدير النباتات نقل الطاقة.. الاستفادة من الطاقة الشمسية بكفاءة غير مسبوقة
عندما يتدفق ضوء الشمس على ورقة، يحدث شيء مذهل، تتدفق الطاقة من تلك الأشعة عبر المسارات الجزيئية بكفاءة أثارت فضول الأجيال.
وأجرى الدراسة الجديدة البروفيسور يورجن هاور، من الجامعة التقنية في ميونيخ (TUM)، ونُشرت في مجلة Chemical Science .
وأثار هذا الأمر فضول الباحثين في مختلف أنحاء العالم، لأن هذه النباتات تبدو قادرة على الاستفادة من المبادئ المحيرة لميكانيكا الكم لإدارة طاقة الضوء دون أي خسائر تقريبًا.
فهم عملية التمثيل الضوئي
البناء الضوئي هو طريقة الطبيعة لصنع الغذاء من ضوء الشمس، وهو السبب في حصولنا على الأكسجين للتنفس.
تستخدم النباتات والطحالب وبعض البكتيريا ضوء الشمس والماء وثاني أكسيد الكربون لإنتاج الجلوكوز (نوع من السكر) والأكسجين.
فكر في الأمر كما لو كان مطبخًا يعمل بالطاقة الشمسية، حيث تقوم النباتات بإعداد وجباتها المليئة بالطاقة.
إنها تمتص ضوء الشمس من خلال الكلوروفيل، الصبغة الخضراء الموجودة في أوراقها، وتستخدم تلك الطاقة لتشغيل التفاعلات الكيميائية التي تحول ثاني أكسيد الكربون والماء إلى طعام.
والجزء الأفضل في الأمر هو أنها تطلق الأكسجين كمنتج ثانوي، وهو أمر مريح للغاية بالنسبة لبقية البشر.
لا يقتصر دور عملية التمثيل الضوئي على إبقاء النباتات على قيد الحياة، بل إنها تحافظ على استمرار الكوكب بأكمله، وهي تشكل أساس السلسلة الغذائية، حيث تغذي كل شيء من الحشرات الصغيرة إلى الثدييات الضخمة.
كما أنه يساعد على تنظيم الغلاف الجوي للأرض عن طريق سحب ثاني أكسيد الكربون من الهواء، وهو أمر ضروري لتحقيق التوازن المناخي.
بدون عملية البناء الضوئي لن يكون لدينا الغابات، أو الفواكه، أو حتى الهواء الذي نحتاجه للبقاء على قيد الحياة.
كيف تستخدم النباتات التأثيرات الكمومية
هناك مفهوم معروف باسم التراكب، حيث تتداخل الطاقة أو الجسيمات في حالات متعددة محتملة، قد يبدو هذا الأمر خياليا، لكن النباتات استغلته لمليارات السنين لزيادة امتصاصها للشمس.
كما أوضح البروفيسور هاور من جامعة ميونيخ التقنية، “عندما يتم امتصاص الضوء في ورقة، على سبيل المثال، يتم توزيع طاقة الإثارة الإلكترونية على عدة حالات لكل جزيء كلوروفيل متحمس؛ وهذا ما يسمى بتراكب الحالات المثارة “.
يتضمن جزء كبير من هذه العملية الكلوروفيل ، وهو صبغة خضراء تمتص أطوال موجية محددة من الضوء.
تسليط الضوء على حالات الطاقة
بمجرد أن تلتقط الورقة الضوء، يتعين عليها نقل تلك الطاقة قبل أن تتبدد على شكل حرارة، تحدث هذه اللحظات الأولى بسرعة لا تصدق، ويعتقد العلماء أن مسارات الإلكترونات المستقرة في البكتيريا الضوئية تعمل بطريقة مماثلة.
وقال البروفيسور هاور من جامعة ميونيخ التقنية: “إن ميكانيكا الكم تشكل عنصراً أساسياً في فهم الخطوات الأولى لنقل الطاقة وفصل الشحنة”.
تشير الدراسات إلى أن العمليات الصغيرة التي تشبه الموجات تعمل على توجيه تدفق الطاقة نحو المراكز الكيميائية للخلية النباتية.
تحسين عملية التمثيل الضوئي الاصطناعي
ويرى الفريق، أن بحثهم هو وسيلة لتطبيق هذه الرؤى الطبيعية على المواد الهندسية القادرة على حصاد الضوء.
يقترح الباحثون، أن الحالات الإلكترونية للجزيء، والتي يتم ترتيبها بطرق دقيقة، يمكن أن تدفع أنظمة نقل الطاقة إلى أداء أقرب إلى المثالي.
وأشار أحد الباحثين من جامعة ميونيخ التقنية إلى أن “تطبيق هذه النتائج في تصميم وحدات التمثيل الضوئي الاصطناعي يمكن أن يساعد في الاستفادة من الطاقة الشمسية بكفاءة غير مسبوقة لتوليد الكهرباء أو الكيمياء الضوئية”.
تعقيدات التقاط ضوء الشمس
اكتشف العلماء أن العديد من الحالات الإلكترونية تتداخل في الكلوروفيل، مما يشكل طرقًا يمكن أن تنزلق منها نبضات الضوء دون مقاومة كبيرة.
دفع هذا التدفق الخالي من الخسارة تقريبًا الكيميائيين والفيزيائيين إلى البحث بشكل أعمق في خطوات الاسترخاء السريعة التي تمنع الطاقة من التسرب.
تتضمن هذه الخطوات السريعة توازنًا بين الاهتزازات، وارتباطات الحالة، وإطلاق الطاقة في شكل حرارة.
يستخدم الباحثون أشعة الليزر فائقة السرعة التي تطلق نبضات تستمر لأجزاء من تريليون جزء من الثانية لمراقبة هذه التغيرات المبكرة.
التغيرات الكمومية الصغيرة في النباتات
تكشف نظرة أقرب عن فروق دقيقة بين نطاقات الطاقة المحددة، والتي تحافظ على استقرار سلسلة النقل الشاملة.
يمكن أن تؤدي التعديلات البسيطة في مسافة أو زاوية جزيئات الكلوروفيل إلى تغييرات كبيرة في مدى كفاءة مرورها عبر ضوء الشمس الممتص.
ورغم أن الفيزياء الكلاسيكية وحدها لا تستطيع وصف هذه الأحداث بشكل كامل، فإن المناهج الكمومية تبدو قادرة على ملء هذه الفجوة.
السؤال الرئيسي هو كيفية التحكم في هذه الحالات بطرق تحاكي أو تتجاوز مهارة الورقة في التقاط الفوتونات.
ماذا يحدث بعد ذلك؟
الهدف الرئيسي هو بناء أنظمة اصطناعية تحتفظ بالضوء لفترة أطول وترسله إلى حيث تكون هناك حاجة إليه.
يعتقد بعض الباحثين، أن تحسين هذه الهياكل سيؤدي إلى تطوير أجهزة ضوئية أفضل تعمل على تشغيل المنازل أو تحريك التفاعلات الكيميائية بتكلفة أقل.
تجمع هذه المجالات بين الكيمياء والأحياء والفيزياء بهدف تعزيز أداء كل شيء بدءًا من الخلايا الشمسية وحتى المفاعلات الكيميائية الضوئية.
الهدف النهائي هو خلق تكنولوجيا تتصرف مثل عجائب الطبيعة ولكنها تتناسب مع الاحتياجات البشرية لاستخدام الطاقة على نطاق واسع.
التطلع إلى ما وراء الأفق
ومن خلال إعادة التفكير في استراتيجيات الطاقة التقليدية، يأمل العلماء أن يتمكنوا من تكرار الكفاءة التي شوهدت في النباتات والبكتيريا الضوئية.
وقد يعني هذا إعادة تصور كيفية تخزين الطاقة الشمسية، مع تصميمات تحافظ على الرقصة الجزيئية الدقيقة سليمة.
تمثل هذه الدراسة الأخيرة بداية جديدة من خلال التأكيد على أن التأثيرات على المستوى الكمومي تلعب دورًا عمليًا في عملية التمثيل الضوئي.
يفتح هذا التأكيد الأبواب أمام المزيد من المشاريع التي تهدف إلى دفع الهندسة الجزيئية إلى أماكن كان يُعتقد في السابق أنها غامضة للغاية.
لماذا يهم أي من هذا؟
تسعى الفرق البحثية في جميع أنحاء العالم الآن إلى تحسين الأساليب الطيفية المتقدمة.
ويتضمن جزء من ذلك تصفية الإشارات المعقدة لتتبع كيفية انتقال كل جزء من طاقة الضوء عبر الجزيئات قبل تثبيتها في شكل كيميائي.
ومن المرجح أن تؤدي هذه الاستكشافات إلى مفاهيم جديدة تعمل على ثني أو ترتيب المركبات الشبيهة بالكلوروفيل في أطر مستقرة.
ومع تزايد وضوح المبادئ، سوف تتمكن المختبرات من إنشاء نماذج أولية لخلايا اختبار تعمل على توجيه الطاقة مع الحد الأدنى من الهدر.
النباتات وميكانيكا الكم والمستقبل
ومع استمرار البحث، قد يتعلم المهندسون كيفية تصميم أنظمة اصطناعية تتناسب مع تعامل الطبيعة غير المسبوق مع أشعة الشمس.
الهدف هو تقليص الخسائر في تدفق الإلكترونات من خلال تنظيم الحالات الجزيئية بنفس الطريقة التي فعلتها الأوراق منذ قرون.
لا يتعلق الأمر فقط ببناء ألواح شمسية أفضل، على الرغم من أن هذه هي النتيجة الرئيسية.
ويتعلق الأمر أيضًا بمعرفة كيف يمكن لهذا الهمس الهادئ للنشاط الكمومي، المختبئ داخل الأوراق الخضراء العادية، أن يستمر في إلهام المزيد من الأفكار في علم الطاقة.