واتساب ستطلق آلية لمحاربة التزييف العميق والمعلومات الخاطئة الناتجة عن الذكاء الاصطناعي
تاريخ النشر: 21st, February 2024 GMT
أعلنت شركة ميتا، الإثنين، أنها ستطلق قريباً خدمة خاصة عبر واتس آب، لمحاربة التزييف العميق والمعلومات الخاطئة الناتجة عن الذكاء الاصطناعي.
وبحسب ميتا، فإن هذه الخدمة ستساعد المستخدمين على الحصول على معلومات موثوقة تم التحقق منها بالفعل، بدعم من "تحالف مكافحة المعلومات المضللة"، وشبكة مرتبطة بها من مدققي الحقائق والمنظمات البحثية المستقلة.
وتسمح المبادرة للمستخدمين بالإبلاغ عن التزييف العميق الذي يتم عبر الذكاء الاصطناعي، عن طريق برنامج الدردشة المخصص على واتس آب، والذي يدعم العديد من اللغات، ليتم إعادة توجيه الرسائل التي يرسلها المستخدمون، إلى مدققي الحقائق وشركاء الصناعة والمختبرات الرقمية الذين سيقومون بتقييم المحتوى والتحقق منه والكشف عما إذا كانت المعلومات صحيحة أو ملفقة.
وبحسب صحيفة إنديان إكسبرس، فإن البرنامج لديه نهج مكون من أربع ركائز، هي الكشف والوقاية والإبلاغ وزيادة الوعي حول الانتشار المتصاعد للتزييف العميق، إلى جانب بناء أداة مهمة تسمح للمستخدمين بالوصول إلى معلومات موثوقة.
وبينما تعمل ميتا على برنامج الدردشة الآلي، يعمل تحالف مكافحة المعلومات الخاطئة على إنشاء "وحدة تحليل التزييف العميق" المركزية، التي ستساعد المستخدمين على إدارة جميع الرسائل الواردة التي يتلقونها.
وأشارت ميتا إلى أنها دخلت في شراكة مع 11 منظمة مستقلة لتدقيق الحقائق بهدف تحديد المعلومات الخاطئة على المنصة والتحقق منها ومراجعتها.
يذكر أن تطبيق واتس آب أصبح في الآونة الأخيرة، مرتعاً للمعلومات المضللة التي يتم نشرها عن طريق إعادة توجيه الرسائل، وعلى الرغم من أن ميتا حاولت اتخاذ إجراءات صارمة ضد المشكلة من خلال تدابير مثل الحد من عمليات إعادة التوجيه وإلغاء تنشيط الحسابات المزيفة، إلا أنها لم تتمكن من إيقاف انتشار المعلومات الخاطئة على المنصة.
المصدر: أخبارنا
كلمات دلالية: المعلومات الخاطئة التزییف العمیق
إقرأ أيضاً:
هل يستطيع الذكاء الاصطناعي أن يكون طوق النجاة للمحتاجين؟
نشرت مجلة نيتشر العلمية تقريراً حديثاً يستعرض كيف يمكن للذكاء الاصطناعي أن يكون أداة فعالة في مكافحة الفقر حول العالم، وذلك من خلال تحليل البيانات وتحديد المستحقين للمساعدات بطرق أكثر دقة وسرعة من الأساليب التقليدية.
في أواخر عام 2020، خلال جائحة كوفيد-19، تلقى عشرات الآلاف من القرويين الفقراء في توغو مساعدات مالية مباشرة عبر هواتفهم المحمولة، بفضل نظام ذكاء اصطناعي مبتكر. تم تحويل حوالي 10 دولارات كل أسبوعين إلى حساباتهم الرقمية، وهي مبالغ قد تبدو صغيرة، لكنها ساعدت العديد منهم على تلبية احتياجاتهم الأساسية وتجنب الجوع.
اقرأ أيضاً.. هل يشيخ الذكاء الاصطناعي كالبشر؟ خفايا التقادم الرقمي
كيف يعمل الذكاء الاصطناعي في تحديد الفقراء؟
اعتمدت حكومة توغو، بالتعاون مع علماء من جامعة كاليفورنيا في بيركلي ومنظمة GiveDirectly غير الربحية، على الذكاء الاصطناعي لتحليل صور الأقمار الصناعية وبيانات شبكات الهواتف المحمولة لتقدير مستوى الدخل والفقر في مناطق مختلفة. وبدلاً من استخدام المسوحات الميدانية التقليدية التي تستغرق وقتاً طويلاً وتحتاج إلى موارد ضخمة، استطاع النظام الجديد تحديد الأشخاص الأكثر حاجة بسرعة ودقة أكبر.
وفقاً للمجلة، فإن هذا النهج ساعد في التغلب على تحديات مثل عدم توفر بيانات دقيقة عن الفقراء، وهي مشكلة تواجه الحكومات والمنظمات الإنسانية عند توزيع المساعدات.
هل يمكن للذكاء الاصطناعي أن يحل محل الطرق التقليدية؟
حالياً، يعيش نحو 700 مليون شخص حول العالم في فقر مدقع، حيث يحصلون على أقل من 2.15 دولار يومياً وفقاً للبنك الدولي. ومع ذلك، يواجه قياس الفقر وتوزيع المساعدات مشكلات عديدة، منها التكاليف العالية لجمع البيانات وعدم شمول بعض الفئات مثل المشردين أو الأشخاص الذين لا يملكون هواتف محمولة.
يقول الباحث جوشوا بلومنستوك، المتخصص في علوم الكمبيوتر بجامعة كاليفورنيا في بيركلي، إن الذكاء الاصطناعي يمكن أن يساعد في التغلب على هذه المشكلات عبر تحليل كميات هائلة من البيانات بسرعة فائقة، مما يجعل عملية تحديد المستفيدين من المساعدات أكثر كفاءة.
من جهة أخرى، يُحذر خبراء مثل أولا هال، الباحث في جامعة لوند في السويد، من أن الذكاء الاصطناعي ليس مثالياً، فقد تعاني بعض النماذج من التحيز أو عدم الدقة، مما قد يؤدي إلى استبعاد بعض الأشخاص المستحقين للمساعدة.
كيف تطور قياس الفقر عبر الزمن؟
تاريخياً، حاول الباحثون تطوير معايير لقياس الفقر منذ أواخر القرن التاسع عشر. على سبيل المثال، في عام 1901، أجرى عالم الاجتماع البريطاني سيبوم راونتري دراسة ميدانية حول الفقر في مدينة يورك بالمملكة المتحدة، حيث تم تحديد الفقر بناءً على قدرة الأسر على تلبية الحد الأدنى من الاحتياجات الغذائية.
لاحقاً، في عام 1964، اعتمدت الولايات المتحدة مقياس الفقر الرسمي الذي حدد الحد الأدنى من الدخل اللازم لتغطية الطعام والمسكن والنفقات الأساسية، وهو ما تبنته أيضاً دول مثل الهند.
لكن هذه المقاييس لم تعكس الواقع المعقد للفقر، حيث إن امتلاك دخل معين لا يعني بالضرورة القدرة على تأمين الصحة، التعليم، أو المياه النظيفة. ولهذا السبب، طورت الباحثة سابينا ألكاير بالتعاون مع جيمس فوستر ما يُعرف بمؤشر الفقر متعدد الأبعاد MPI عام 2008، والذي يقيس الفقر بناءً على عشرة عوامل مختلفة، مثل التغذية، التعليم، وسهولة الوصول إلى مياه الشرب.
اقرأ أيضاً.. عندما تتحدث الأرض.. هل يمكن للذكاء الاصطناعي التنبؤ بالزلازل؟
هل الذكاء الاصطناعي هو الحل؟
مع التقدم في تقنيات الذكاء الاصطناعي، بدأ الباحثون في استخدام صور الأقمار الصناعية وتحليل البيانات الرقمية لتحديد الفقر بشكل أكثر دقة. على سبيل المثال، أظهرت دراسة أجرتها جامعة ستانفورد عام 2016 أن الذكاء الاصطناعي يمكنه التنبؤ بمعدلات الفقر بدقة مماثلة للمسوحات الميدانية التقليدية، ولكن بتكلفة أقل وبسرعة أكبر.
تتوسع هذه التجارب حالياً، حيث يتم تحليل بيانات الهاتف المحمول، حركة المرور، والإضاءة الليلية لتحديد المناطق الأكثر فقراً، ما يسمح للحكومات والمنظمات الإنسانية بتوجيه المساعدات بشكل أكثر كفاءة.
هل نحن مستعدون للاعتماد على الذكاء الاصطناعي بالكامل؟
رغم الإمكانات الكبيرة التي يوفرها الذكاء الاصطناعي في مكافحة الفقر، إلا أن هناك تحديات يجب معالجتها، مثل ضمان العدالة في توزيع المساعدات، حماية البيانات الشخصية، وتجنب التحيزات الخوارزمية التي قد تؤثر على دقة التحديد.
في نهاية التقرير، تشير مجلة نيتشر إلى أن استخدام الذكاء الاصطناعي في مكافحة الفقر لا يزال في مراحله الأولى، لكن التجارب مثل مشروع توغو تثبت أنه يمكن أن يكون أداة قوية وفعالة إذا تم استخدامه بطريقة مدروسة ومنصفة.
إسلام العبادي(أبوظبي)