خوارزمية الذكاء الاصطناعي المتمردة
تاريخ النشر: 10th, February 2024 GMT
أُذيعَ خبرٌ عبر وسائل الإعلام العالمية -مع بداية عام 2024م- عن حادثة -ليست بجديدةٍ- تتعلق بخوارزميات الذكاء الاصطناعي وسلوكها العجيب مفاده أن نظام دردشة آلي «Chatbot» يعمل بواسطة الذكاء الاصطناعي -تستعمله إحدى كبرى شركات التوصيل في التحاور مع زبائنها والرد على استفساراتهم- خرج عن أطر الوظيفة المنوطة إليه وخالف أعراف التسويق وقواعدها الدبلوماسية؛ فهمّ بشتم زبائن الشركة وأضاف مع شتائمه وألفاظه غير اللائقة انتقاده للشركة المُشغِّلة له عبر إظهاره لمساوئها والتوصية باستبدالها بشركات منافسة أخرى؛ مما استدعى تدخّل الشركة لإيقاف هذا النظام الذكي المتمرّد، وهذا يشبه -إلى حد ما- حادثة حصلت مع شركة «مايكروسوفت» عام 2016م التي اضطرت أيضا إلى تعطيل روبوت دردشة -يعمل بالذكاء الاصطناعي- خاص بها يُعرف بـ«تاي Tay» -بعد مرور 24 ساعة من إطلاقه- يعمل في منصة «تويتر» -حاليا منصة إكس- بعد تمرده وخروجه عن السيطرة واستعماله لألفاظ غير لائقة مع العامّة الذين يحاورونه في منصة التواصل الاجتماعي.
تتوارد إلى أسماعنا ومشاهدنا مثل هذه التصرفات التي تصدر من أنظمة الدردشة الذكية وخوارزميات الذكاء الاصطناعي بشكل عام؛ إذ إن مثل هذا التمرّد الذي تنهجه الخوارزمية الذكية أمر متوقع لأسباب تقنية وخوارزمية متنوعة؛ حيث يُتحكم بسلوك أنظمة الذكاء الاصطناعي بواسطة البيانات التي دُرّبت عليها، والخوارزميات التي تعمل بها، والقيود أو الإرشادات التي يضعها مطوروها، وعندما تبدأ خوارزمية الذكاء الاصطناعي مثل تلك التي تعمل في أنظمة الدردشة في إظهار سلوك غير مرغوب فيه مثل استعمال لغة غير لائقة أو تصرّف عنصري؛ فيمكن أن تُفسَّر مثل هذه الظواهر بناء على عدة عوامل منها وجود مشكلات في بيانات التدريب؛ حيث تتدرب خوارزميات الذكاء الاصطناعي -في كثير من حالاتها- على مجموعات بيانات كبيرة تحتوي على تفاعلات لغوية بين البشر، ومن الطبيعي أن تتضمن هذه التفاعلات اللغوية على محتوى لغوي غير لائق أو سلبي الذي سيتحول -بعد ذلك- إلى بيانات تتدرب عليها الخوارزمية، وحينها من المتوقع أن تتعلم الخوارزمية محاكاة هذه البيانات «اللغوية» بجيّدها وسيئها، ومع مشكلة عدم الانتقاء الجيد والمتنوع للبيانات فإن نموذج الذكاء الاصطناعي سيكون في فضاء مفتوح من البيانات التي تفضي به إلى الخروج عن النمط اللائق.
كذلك عامل التحيّز الخوارزمي؛ إذ يمكن للخوارزميات الذكية أن تطور تحيزات استنادًا إلى البيانات التي تدربت عليها، وهذه التحيزات يمكن أن تؤدّي إلى سلوك غير محمود بما في ذلك إنتاج استجابات لا تتناسب مع الاستعمال المرغوب للنموذج الذكي، ويمكن أن يكون التحيّز الخوارزمي تحديًا لأنه في كثير من الأحيان يعكس أنماطًا معقدة ودقيقة في بيانات التدريب. أحد العوامل الأخرى أيضا ما يتعلق بنقص الفهم السياقي، وتظهر هذه المشكلة -غالبا- مع نماذج الذكاء الاصطناعي التوليدية المرتبطة بأنظمة المحولات GPT (Generative Pre-trained Transformer)؛ حيث إنها توّلد مخرجاتها نتيجةً للأنماط التي تعلمتها من البيانات، ومع ذلك، فإنها من الممكن أن لا تفهم السياق -بشكل واضح- أو خفايا لغة البشر المرتبطة بالأعراف الاجتماعية والثقافية، ويمكن لهذا النقص في الفهم العميق للغة أن يقود الخوارزمية إلى تفاعلات لغوية غير مناسبة في بعض الحالات.
كذلك من العوامل التي تسهم في صناعة تمرّد الخوارزمية ما يمكن أن نطلق عليه الهجمات المعادية عبر التفاعلات الاستفهامية المُشتِّتَة للنموذج الذكي؛ فيقوم بعض المستخدمين بشكل متعمد أو غير متعمد بتقديم مدخلات للنموذج الذكي في شكل استفهامات تستغل نقاط الضعف في نموذج الذكاء الاصطناعي؛ مما يقود الخوارزمية إلى سلوك لغوي لا يتوافق مع السياق المطلوب ويقوّض من قدراته الحوارية ويضعفها، وهذا ما يسهم في تدرب النموذج الذكي على أساليب حوارية جديدة -غير مجدية- تستند إلى التفاعلات الاستفهامية غير الواضحة أو غير المرغوبة؛ فتتم وضع الخوارزمية بعد فترة من التدرب على مثل هذه الأنماط اللغوية.
من حيث المبدأ الرياضي لآلية عمل خوارزمية الذكاء الاصطناعي، تعتمد النماذج الذكية على آلية توليد النصوص اعتمادا على مبدأ الاحتمالات الرياضي في توزيع الكلمات المناسبة لتشكيل النص المناسب؛ فمثلا، تستعمل النماذج التوليدية أنظمة الانتباه الذاتي «Self attention» -الذي سبق شرحه في مقال سابق نُشر في جريدة «عُمان»- لوزن الكلمات المختلفة حسب الأهمية والأولوية وتوليد مخرجات نصية مرجّحة إحصائيا بناءً على بيانات التدريب؛ فيختار النموذج كل كلمة في استجابته وفقا إلى الاحتمال الشَّرطِي لتلك الكلمة نظرًا للكلمات السابقة والسؤال المُدخل عبر التفاعلات الاستفهامية، وتُعرف هذه العملية بالعملية التنبؤية التي يصعب التحكم بمخرجاتها حتى في حالة القدرة على التحكم بالمدخلات، وهذا ما يُفسّر تعدد التحديات في مواجهة جماح الخوارزمية وتمردها الذي لا يمكن أن يعتمد على عامل واحد مثل التحكم في البيانات وانتقائها بل يتعدى الأمر إلى وجود عوامل أخرى مثل التحكم في عمل الخوارزمية نفسها، وهذا يكون عاملا وتحديا آخر بجانب البيانات والتحكم بها، ويعدّ التعقيد الرياضي للخوارزمية وشبكاتها العميقة تفسيرا لوجود هذا التحدي؛ إذ يتضاعف تعقيد النموذج الرياضي لخوارزميات الذكاء الاصطناعي خصوصا النماذج الأحدث التي تعتمد على خوارزميات التعلّم العميق التي تتطلب شبكات عصبية كثيرة -رقمية- وبيانات كبيرة؛ مما يجعل منها معقدة للغاية؛ فتُوصف في كثير من الأحيان بأنها «صناديق سوداء» لأن عمليات اتخاذ القرارات الخاصة بها ليست قابلة للتفسير بسهولة؛ مما يُصّعب هذا التعقيد قدرات التنبؤ والتحكم في كيفية استجابة النموذج لكل المدخلات؛ فتظهر في النموذج ملامح التمرّد المنبوذة عبر بعض مخرجاتها غير المرغوبة مثل تلك التي سقناها في بداية المقال.
عندما يفقد الذكاء الاصطناعي «السيطرة» فإن ذلك يكون نتيجة لتوليد النموذج لمخرجات عالية الاحتمال إلا أن تلك المخرجات في حالات ما تكون غير مناسبة أو غير متوقعة بسبب من الأسباب المذكورة آنفا، وثمّة إجراءات يمكن العمل عليها لمعالجة مثل هذه المشكلات المتعاقبة بتمرّد الخوارزمية منها تطوير آلية تنظيف البيانات عبر الانتقاء الآلي المشروط للنصوص، وتقليل التحيّز، وتحسين التعامل مع السياق، وتصميم تفاعل آمن لمنع الهجمات المعادية التي تعمل على التفاعلات الاستفهامية المُغرِضة، وتفعيل المراقبة المستمرة للخوارزمية، وهذا يمكن أن يكون جزءا من العناصر الرقمية التي تعمل عليها الخوارزمية وفقا لجزئيات رياضية يُدخلها المبرمجون أثناء بناء نموذج الخوارزمية وتحديد ماهيتها وقواعد عملها، ويمكن ملاحظة وجود مثل هذه التحسينات المتعلقة بسلوك الخوارزميات الذكية وآلية التحكم بها في كثير من النماذج التوليدية المستحدثة مثل «شات جي بي تي 4» التي تعتبر أكثر انضباطا من حيث استعمالها للنصوص والصور نظرا لوجود آلية رقمية مسبقة منظِّمة لسلوك النموذج تحدد له الأطر الأخلاقية العامة. بشكل عام تعدّ مثل هذه الحوادث التي تدخل في نطاق التحيّز والعنصرية والتمرّد تنبيهات أوليّة تصدر من خوارزميات في مراحل ذكائها البدائية -الجيل التطبيقي الأول للذكاء الاصطناعي- لتوجّه الإنسان إلى ضبط الجاهزية الرقمية وأنظمتها التحكمية قبل الدخول إلى المرحلة القادمة للذكاء الاصطناعي الذي يقترب من النوع العام؛ حيث تتفوق بذكائها على صانعها «الإنسان»، وهذا ما سبق التنبيه إليه وإلى مخاطره، والمسارعة بوضع التشريعات الرقمية الخاصة بحوكمة الذكاء الاصطناعي والتحكم به قبل فوات الأوان.
د. معمر بن علي التوبي أكاديمي وباحث عُماني
المصدر: لجريدة عمان
كلمات دلالية: البیانات التی د الخوارزمیة فی کثیر من التی تعمل مثل هذه التحی ز یمکن أن وهذا ما
إقرأ أيضاً:
قمة الذكاء الاصطناعي في رواندا تحدد مسار القارة التكنولوجي
في خطوة هامة نحو تعزيز مكانة القارة الأفريقية في مجال التكنولوجيا والابتكار، تستضيف العاصمة الرواندية القمة العالمية الأولى للذكاء الاصطناعي التي ستُعقد غدا الخميس وبعد غد، يومي 3 و4 أبريل/نيسان الجاري.
ويعد الحدث بمثابة منصة حوارية ضخمة تجمع قادة الحكومات والخبراء ورؤساء الشركات من مختلف دول العالم، حيث تتم مناقشة كيفية الاستفادة من الذكاء الاصطناعي لتحفيز النمو والتنمية في القارة.
قمة لتمكين أفريقيا رقميًاتعتبر هذه القمة، التي تُنظم تحت شعار "الذكاء الاصطناعي من أجل أفريقيا"، خطوة محورية نحو بناء مستقبل تكنولوجي للقارة.
ووفقًا لما ذكرته التقارير، فإن هذه القمة ستركز على وضع إستراتيجية شاملة لتعزيز استخدام الذكاء الاصطناعي في أفريقيا، خاصة في مجالات حيوية مثل الرعاية الصحية والتعليم والزراعة.
ويُنظر إلى الذكاء الاصطناعي كأداة محورية لتحسين جودة الخدمات في هذه القطاعات، بالإضافة إلى تعزيز النمو الاقتصادي في القارة وفتح الفرص لإيجاد وظائف جديدة.
وسيتم مناقشة الدور الهام للذكاء الاصطناعي في تحسين أنظمة الرعاية الصحية في أفريقيا، مع التركيز على تطوير أدوات مبتكرة تساعد في تشخيص الأمراض بشكل أسرع وأكثر دقة.
كما سيتم تسليط الضوء على إمكانيات الذكاء الاصطناعي في مجال التعليم، من خلال توفير حلول تعليمية تناسب احتياجات الطلاب الأفارقة وتواجه التحديات التي يعاني منها قطاع التعليم في بعض البلدان.
إعلان فرصة تاريخية لتحول رقمي شاملتُعد القمة فرصة تاريخية غير مسبوقة لأفريقيا لتقوية مكانتها في عالم التكنولوجيا.
ووفقًا لتقارير، تعد هذه القمة نقطة انطلاق للتعاون بين الدول الأفريقية والشركات العالمية الكبرى في مجال الذكاء الاصطناعي، مما سيتيح للقارة تعزيز بنية تحتية تكنولوجية.
كما يُنتظر أن تُسهم هذه القمة في تطوير حلول مبتكرة تتماشى مع احتياجات أفريقيا، مما يفتح المجال أمام شراكات جديدة تدعم الابتكار والبحث العلمي.
من بين المواضيع البارزة -التي ستتم مناقشتها في القمة- الزراعة واستخدام الذكاء الاصطناعي لتحسين الإنتاجية الزراعية.
ويتوقع -مع التحديات المرتبطة بالتغير المناخي وأمن الغذاء بأفريقيا- أن يسهم الذكاء الاصطناعي في تحسين استدامة الزراعة.
ومن خلال تقنيات الذكاء الاصطناعي، سيتمكن المزارعون من التنبؤ بالكوارث الطبيعية وتحليل البيانات المتعلقة بالطقس، مما يساهم في اتخاذ قرارات زراعية أكثر دقة وفعالية.
تطوير البنية التحتية التكنولوجيةتعتبر القمة في العاصمة كيغالي أيضًا نقطة انطلاق لمشاريع ضخمة تهدف إلى تحسين البنية التحتية الرقمية في أفريقيا.
وهناك تركيز على أهمية تطوير شبكات الإنترنت فائقة السرعة وتزويد الشركات الصغيرة والمتوسطة بالأدوات الرقمية اللازمة للنمو. كما سيتناول المشاركون كيفية إنشاء بيئة تشريعية داعمة للاستثمار في مجالات التكنولوجيا الحديثة، مما يساهم في تسريع التحول الرقمي في القارة.
نحو مستقبل تكنولوجي مشرق لأفريقياوستكون قمة الذكاء الاصطناعي في كيغالي خطوة فارقة في تاريخ أفريقيا التكنولوجي.
ومع تزايد الاهتمام الدولي بالقارة، واتساع نطاق التعاون بين مختلف الأطراف، فإن أفريقيا تسير بخطوات واثقة نحو عصر رقمي جديد، حيث سيشكل الذكاء الاصطناعي أحد المحركات الرئيسية لتحقيق النمو المستدام وتحسين حياة المواطنين.