لجريدة عمان:
2025-04-25@05:15:13 GMT

خوارزمية الذكاء الاصطناعي المتمردة

تاريخ النشر: 10th, February 2024 GMT

أُذيعَ خبرٌ عبر وسائل الإعلام العالمية -مع بداية عام 2024م- عن حادثة -ليست بجديدةٍ- تتعلق بخوارزميات الذكاء الاصطناعي وسلوكها العجيب مفاده أن نظام دردشة آلي «Chatbot» يعمل بواسطة الذكاء الاصطناعي -تستعمله إحدى كبرى شركات التوصيل في التحاور مع زبائنها والرد على استفساراتهم- خرج عن أطر الوظيفة المنوطة إليه وخالف أعراف التسويق وقواعدها الدبلوماسية؛ فهمّ بشتم زبائن الشركة وأضاف مع شتائمه وألفاظه غير اللائقة انتقاده للشركة المُشغِّلة له عبر إظهاره لمساوئها والتوصية باستبدالها بشركات منافسة أخرى؛ مما استدعى تدخّل الشركة لإيقاف هذا النظام الذكي المتمرّد، وهذا يشبه -إلى حد ما- حادثة حصلت مع شركة «مايكروسوفت» عام 2016م التي اضطرت أيضا إلى تعطيل روبوت دردشة -يعمل بالذكاء الاصطناعي- خاص بها يُعرف بـ«تاي Tay» -بعد مرور 24 ساعة من إطلاقه- يعمل في منصة «تويتر» -حاليا منصة إكس- بعد تمرده وخروجه عن السيطرة واستعماله لألفاظ غير لائقة مع العامّة الذين يحاورونه في منصة التواصل الاجتماعي.

تُطرح في مثل هذه الحوادث المتعلقة بخوارزميات الذكاء الاصطناعي واستعمالاتها الكثير من الأسئلة الرئيسة منها: لماذا تتمرد خوارزمية الذكاء الاصطناعي وتنهج هذا النهج الذي يتجاوز أطر الأخلاق والأعراف؟ للإجابة عن هذا السؤال؛ ستتفرع أسئلة أخرى، وندخل إلى تفاصيل تقنية متعددة تشرح مفاصل تقنية مهمة إلا أن أهم ما يمكن أن نلفت انتباه القارئ إليه -في البداية- أن سلوك خوارزمية الذكاء الاصطناعي وتفاعله مرتبط بشكل أساسي بالبيانات التي يتلقاها ويتدرب عليها، ولا عجب أن هذه البيانات التي تتدفق إليه عن طريق الدردشة المفتوحة والتفاعل البشري الكثيف معه ستقود إلى كسب هذه الخوارزمية كل ما هو محمود ومذموم من الألفاظ، وهذا ما سنفصّل في إيضاحه في الفقرات القادمة.

تتوارد إلى أسماعنا ومشاهدنا مثل هذه التصرفات التي تصدر من أنظمة الدردشة الذكية وخوارزميات الذكاء الاصطناعي بشكل عام؛ إذ إن مثل هذا التمرّد الذي تنهجه الخوارزمية الذكية أمر متوقع لأسباب تقنية وخوارزمية متنوعة؛ حيث يُتحكم بسلوك أنظمة الذكاء الاصطناعي بواسطة البيانات التي دُرّبت عليها، والخوارزميات التي تعمل بها، والقيود أو الإرشادات التي يضعها مطوروها، وعندما تبدأ خوارزمية الذكاء الاصطناعي مثل تلك التي تعمل في أنظمة الدردشة في إظهار سلوك غير مرغوب فيه مثل استعمال لغة غير لائقة أو تصرّف عنصري؛ فيمكن أن تُفسَّر مثل هذه الظواهر بناء على عدة عوامل منها وجود مشكلات في بيانات التدريب؛ حيث تتدرب خوارزميات الذكاء الاصطناعي -في كثير من حالاتها- على مجموعات بيانات كبيرة تحتوي على تفاعلات لغوية بين البشر، ومن الطبيعي أن تتضمن هذه التفاعلات اللغوية على محتوى لغوي غير لائق أو سلبي الذي سيتحول -بعد ذلك- إلى بيانات تتدرب عليها الخوارزمية، وحينها من المتوقع أن تتعلم الخوارزمية محاكاة هذه البيانات «اللغوية» بجيّدها وسيئها، ومع مشكلة عدم الانتقاء الجيد والمتنوع للبيانات فإن نموذج الذكاء الاصطناعي سيكون في فضاء مفتوح من البيانات التي تفضي به إلى الخروج عن النمط اللائق.

كذلك عامل التحيّز الخوارزمي؛ إذ يمكن للخوارزميات الذكية أن تطور تحيزات استنادًا إلى البيانات التي تدربت عليها، وهذه التحيزات يمكن أن تؤدّي إلى سلوك غير محمود بما في ذلك إنتاج استجابات لا تتناسب مع الاستعمال المرغوب للنموذج الذكي، ويمكن أن يكون التحيّز الخوارزمي تحديًا لأنه في كثير من الأحيان يعكس أنماطًا معقدة ودقيقة في بيانات التدريب. أحد العوامل الأخرى أيضا ما يتعلق بنقص الفهم السياقي، وتظهر هذه المشكلة -غالبا- مع نماذج الذكاء الاصطناعي التوليدية المرتبطة بأنظمة المحولات GPT (Generative Pre-trained Transformer)؛ حيث إنها توّلد مخرجاتها نتيجةً للأنماط التي تعلمتها من البيانات، ومع ذلك، فإنها من الممكن أن لا تفهم السياق -بشكل واضح- أو خفايا لغة البشر المرتبطة بالأعراف الاجتماعية والثقافية، ويمكن لهذا النقص في الفهم العميق للغة أن يقود الخوارزمية إلى تفاعلات لغوية غير مناسبة في بعض الحالات.

كذلك من العوامل التي تسهم في صناعة تمرّد الخوارزمية ما يمكن أن نطلق عليه الهجمات المعادية عبر التفاعلات الاستفهامية المُشتِّتَة للنموذج الذكي؛ فيقوم بعض المستخدمين بشكل متعمد أو غير متعمد بتقديم مدخلات للنموذج الذكي في شكل استفهامات تستغل نقاط الضعف في نموذج الذكاء الاصطناعي؛ مما يقود الخوارزمية إلى سلوك لغوي لا يتوافق مع السياق المطلوب ويقوّض من قدراته الحوارية ويضعفها، وهذا ما يسهم في تدرب النموذج الذكي على أساليب حوارية جديدة -غير مجدية- تستند إلى التفاعلات الاستفهامية غير الواضحة أو غير المرغوبة؛ فتتم وضع الخوارزمية بعد فترة من التدرب على مثل هذه الأنماط اللغوية.

من حيث المبدأ الرياضي لآلية عمل خوارزمية الذكاء الاصطناعي، تعتمد النماذج الذكية على آلية توليد النصوص اعتمادا على مبدأ الاحتمالات الرياضي في توزيع الكلمات المناسبة لتشكيل النص المناسب؛ فمثلا، تستعمل النماذج التوليدية أنظمة الانتباه الذاتي «Self attention» -الذي سبق شرحه في مقال سابق نُشر في جريدة «عُمان»- لوزن الكلمات المختلفة حسب الأهمية والأولوية وتوليد مخرجات نصية مرجّحة إحصائيا بناءً على بيانات التدريب؛ فيختار النموذج كل كلمة في استجابته وفقا إلى الاحتمال الشَّرطِي لتلك الكلمة نظرًا للكلمات السابقة والسؤال المُدخل عبر التفاعلات الاستفهامية، وتُعرف هذه العملية بالعملية التنبؤية التي يصعب التحكم بمخرجاتها حتى في حالة القدرة على التحكم بالمدخلات، وهذا ما يُفسّر تعدد التحديات في مواجهة جماح الخوارزمية وتمردها الذي لا يمكن أن يعتمد على عامل واحد مثل التحكم في البيانات وانتقائها بل يتعدى الأمر إلى وجود عوامل أخرى مثل التحكم في عمل الخوارزمية نفسها، وهذا يكون عاملا وتحديا آخر بجانب البيانات والتحكم بها، ويعدّ التعقيد الرياضي للخوارزمية وشبكاتها العميقة تفسيرا لوجود هذا التحدي؛ إذ يتضاعف تعقيد النموذج الرياضي لخوارزميات الذكاء الاصطناعي خصوصا النماذج الأحدث التي تعتمد على خوارزميات التعلّم العميق التي تتطلب شبكات عصبية كثيرة -رقمية- وبيانات كبيرة؛ مما يجعل منها معقدة للغاية؛ فتُوصف في كثير من الأحيان بأنها «صناديق سوداء» لأن عمليات اتخاذ القرارات الخاصة بها ليست قابلة للتفسير بسهولة؛ مما يُصّعب هذا التعقيد قدرات التنبؤ والتحكم في كيفية استجابة النموذج لكل المدخلات؛ فتظهر في النموذج ملامح التمرّد المنبوذة عبر بعض مخرجاتها غير المرغوبة مثل تلك التي سقناها في بداية المقال.

عندما يفقد الذكاء الاصطناعي «السيطرة» فإن ذلك يكون نتيجة لتوليد النموذج لمخرجات عالية الاحتمال إلا أن تلك المخرجات في حالات ما تكون غير مناسبة أو غير متوقعة بسبب من الأسباب المذكورة آنفا، وثمّة إجراءات يمكن العمل عليها لمعالجة مثل هذه المشكلات المتعاقبة بتمرّد الخوارزمية منها تطوير آلية تنظيف البيانات عبر الانتقاء الآلي المشروط للنصوص، وتقليل التحيّز، وتحسين التعامل مع السياق، وتصميم تفاعل آمن لمنع الهجمات المعادية التي تعمل على التفاعلات الاستفهامية المُغرِضة، وتفعيل المراقبة المستمرة للخوارزمية، وهذا يمكن أن يكون جزءا من العناصر الرقمية التي تعمل عليها الخوارزمية وفقا لجزئيات رياضية يُدخلها المبرمجون أثناء بناء نموذج الخوارزمية وتحديد ماهيتها وقواعد عملها، ويمكن ملاحظة وجود مثل هذه التحسينات المتعلقة بسلوك الخوارزميات الذكية وآلية التحكم بها في كثير من النماذج التوليدية المستحدثة مثل «شات جي بي تي 4» التي تعتبر أكثر انضباطا من حيث استعمالها للنصوص والصور نظرا لوجود آلية رقمية مسبقة منظِّمة لسلوك النموذج تحدد له الأطر الأخلاقية العامة. بشكل عام تعدّ مثل هذه الحوادث التي تدخل في نطاق التحيّز والعنصرية والتمرّد تنبيهات أوليّة تصدر من خوارزميات في مراحل ذكائها البدائية -الجيل التطبيقي الأول للذكاء الاصطناعي- لتوجّه الإنسان إلى ضبط الجاهزية الرقمية وأنظمتها التحكمية قبل الدخول إلى المرحلة القادمة للذكاء الاصطناعي الذي يقترب من النوع العام؛ حيث تتفوق بذكائها على صانعها «الإنسان»، وهذا ما سبق التنبيه إليه وإلى مخاطره، والمسارعة بوضع التشريعات الرقمية الخاصة بحوكمة الذكاء الاصطناعي والتحكم به قبل فوات الأوان.

د. معمر بن علي التوبي أكاديمي وباحث عُماني

المصدر: لجريدة عمان

كلمات دلالية: البیانات التی د الخوارزمیة فی کثیر من التی تعمل مثل هذه التحی ز یمکن أن وهذا ما

إقرأ أيضاً:

تحذيرات من تصاعد خطر الذكاء الاصطناعي في هجمات التصيد الاحتيالي

تابع أحدث الأخبار عبر تطبيق

 حذّرت شركة كاسبرسكي من استخدام الذكاء الاصطناعي في تطوير وتخصيص هجمات التصيد الاحتيالي، مشيرة إلى تزايد تعقيد هذه الهجمات وصعوبة كشفها حتى من قبل موظفين ذوي خبرة عالية في الأمن السيبراني.

وكشفت دراسة أجرتها كاسبرسكي في منطقة الشرق الأوسط وتركيا وأفريقيا عن زيادة بنسبة 48% في الهجمات السيبرانية على المؤسسات خلال العام الماضي، حيث شكلت هجمات التصيد الاحتيالي التهديد الأوسع، إذ واجهها 51% من المشاركين في الدراسة. 

ويتوقع 53% من المشاركين تزايدًا في تلك الهجمات مع استمرار المجرمين السيبرانيين في استغلال تقنيات الذكاء الاصطناعي.

الذكاء الاصطناعي يعزز تخصيص الهجمات

بينما كانت هجمات التصيد سابقًا عامة وتُرسل بشكل عشوائي، بات بالإمكان الآن استخدام أدوات الذكاء الاصطناعي لاستهداف الأفراد برسائل دقيقة مخصصة تتوافق مع وظائفهم واهتماماتهم، اعتمادًا على معلومات منشورة عبر الإنترنت. ويُظهر ذلك كيف يمكن بسهولة انتحال صفة مسؤول تنفيذي لإقناع الموظفين باتخاذ إجراءات ضارة.

خطر التزييف العميق يتصاعد

وأشارت كاسبرسكي إلى أن تقنيات التزييف العميق أصبحت أداة فعالة في يد المهاجمين لإنتاج محتوى صوتي ومرئي مقنع لانتحال شخصيات، ما يؤدي إلى حالات مثل تحويل ملايين الدولارات بناءً على مقاطع فيديو وهمية.

تستخدم هجمات التصيد المدعومة بالذكاء الاصطناعي خوارزميات لتجاوز أنظمة الحماية التقليدية وتحاكي أسلوب البريد الإلكتروني الشرعي، مما يتيح لها تفادي اكتشاف برامج الحماية.

الخبرة وحدها لا تكفي

ورغم الخبرة، يظل الموظفون عرضة لهذه الهجمات المتطورة نتيجة لقدرتها على استغلال العوامل النفسية، مثل الاستعجال والخوف والثقة في السلطة، مما يقلل من فرص التحقق المسبق.

استراتيجية دفاعية متعددة المستويات

أوصت كاسبرسكي باعتماد استراتيجية شاملة للتصدي لهذه الهجمات، تتضمن تدريب الموظفين على التهديدات الحديثة عبر منصات مثل Kaspersky Automated Security Awareness Platform، 

واستخدام أدوات الحماية المتقدمة مثل Kaspersky Next وKaspersky Security for Mail Server، بالإضافة إلى تطبيق نموذج أمان انعدام الثقة الذي يضمن الحد من الوصول للأنظمة الحساسة.

مقالات مشابهة

  • تحذيرات من تصاعد خطر الذكاء الاصطناعي في هجمات التصيد الاحتيالي
  • كيف تعمل من المنزل باستخدام الذكاء الاصطناعي؟
  • يساعدك في اتخاذ القرار.. كيف يغيّر الذكاء الاصطناعي صورة الإنسان عن نفسه؟
  • بتشويه «فوضى الذكاء الاصطناعي» للواقع يمضي العالم إلى كارثة
  • خبراء: الذكاء الاصطناعي ليس بديلاً للبشر
  • هل يمكن أن يطوّر الذكاءُ الاصطناعي خوارزمياته بمعزل عن البشر؟
  • إطلاق أول برنامج دكتوراه في الذكاء الاصطناعي في دبي
  • «الذكاء الاصطناعي» يقتحم عالم الملاعب والتحكيم
  • الوطنية لحقوق الإنسان تناقش أخلاقيات الذكاء الاصطناعي
  • الذكاء الاصطناعي والبطالة.. هل اقتربت الروبوتات من السيطرة على سوق العمل؟