إظهار التعليقاتأخبار قد تعجبكNo stories found.

تابعونا

آخر الأخبارالدوري الإنجليزي الدوري المصريالدوري السعوديعاجل الدوري الإسبانيدوري أبطال أوروبا المحترفينالتاريخ

واتس كورة

Powered by Quintype

واتس كورة wtkora.com INSTALL APP.

المصدر: واتس كورة

كلمات دلالية: الدوري السعودي محمد صلاح رونالدو الهلال السعودي محمد صلاح النصر السعودي الاهلي ليفربول محمد صلاح الزمالك الدوري السعودي مباريات الدوري السعودي أخبار الدوري السعودي الاتحاد السعودي أخبار الاتحاد السعودي

إقرأ أيضاً:

تحديات جوهرية تواجه تطور الذكاء الاصطناعي

#سواليف

أظهر استطلاع حديث لخبراء في مجال #الذكاء_الاصطناعي أن توسيع نماذج اللغات الكبيرة (LLMs) لن يؤدي إلى تحقيق الذكاء الاصطناعي العام (AGI).

يعدّ AGI بمثابة النقلة النوعية التي تمكّن الأنظمة من التعلم بشكل فعّال كالذكاء البشري أو أفضل منه.

وأكد 76% من 475 باحثا في المجال، أنهم يرون أن هذا التوسع “غير مرجح” أو “غير مرجح جدا” أن يحقق هذا الهدف المنشود.

مقالات ذات صلة إعداد بسيط في هاتفك قد يجعلك تبدو أصغر بـ10 سنوات! 2025/04/01

وتعتبر هذه النتيجة انتكاسة كبيرة للصناعات التكنولوجية التي توقعت أن تحسينات بسيطة في النماذج الحالية من خلال مزيد من البيانات والطاقة ستؤدي إلى الذكاء الاصطناعي العام.

ومنذ #طفرة الذكاء الاصطناعي التوليدي في 2022، كانت التوقعات تركز على أن زيادة الموارد كافية لتجاوز #الذكاء_البشري. لكن مع مرور الوقت، وبالرغم من الزيادة الكبيرة في الإنفاق، فإن التقدم قد تباطأ بشكل ملحوظ.

وقال ستيوارت راسل، عالم الحاسوب في جامعة كاليفورنيا، بيركلي، والذي شارك في إعداد التقرير: “منذ إصدار GPT-4، أصبح واضحا أن التوسع في النماذج كان تدريجيا ومكلفا. الشركات قد استثمرت أموالا ضخمة بالفعل، ولا يمكنها التراجع بسبب الضغوط المالية”.

وفي السنوات الأخيرة، ساهمت البنية الأساسية المبتكرة المسماة “المحولات” (Transformers)، التي ابتكرها علماء غوغل عام 2017، في تحسن قدرات نماذج الذكاء الاصطناعي. وتستفيد هذه النماذج من زيادة البيانات لتوليد استجابات أدق. ولكن التوسع المستمر يتطلب موارد ضخمة من الطاقة والمال.

وقد استقطب قطاع الذكاء الاصطناعي المولّد نحو 56 مليار دولار في رأس المال المغامر عام 2024، مع تكريس جزء كبير من هذه الأموال لبناء مراكز بيانات ضخمة تسببت في زيادة انبعاثات الكربون ثلاث مرات منذ 2018.

ومع استنفاد البيانات البشرية القابلة للاستخدام بحلول نهاية هذا العقد، فإن الشركات ستضطر إما لاستخدام البيانات التي أنشأها الذكاء الاصطناعي نفسه أو جمع بيانات خاصة من المستخدمين، ما يعرض النماذج لمخاطر أخطاء إضافية. وعلى الرغم من ذلك، لا يقتصر السبب في محدودية النماذج الحالية على الموارد فقط، بل يتعدى ذلك إلى القيود الهيكلية في طريقة تدريب هذه النماذج.

كما أشار راسل: “المشكلة تكمن في أن هذه النماذج تعتمد على شبكات ضخمة تمثل مفاهيم مجزّأة، ما يجعلها بحاجة إلى كميات ضخمة من البيانات”.

وفي ظل هذه التحديات، بدأ الباحثون في النظر إلى نماذج استدلالية متخصصة يمكن أن تحقق استجابات أكثر دقة. كما يعتقد البعض أن دمج تقنيات الذكاء الاصطناعي مع أنظمة تعلم آلي أخرى قد يفتح آفاقا جديدة.

وفي هذا الصدد، أثبتت شركة DeepSeek الصينية أن بإمكانها تحقيق نتائج متميزة بتكاليف أقل، متفوقة على العديد من نماذج الذكاء الاصطناعي التي تعتمد عليها شركات التكنولوجيا الكبرى في وادي السيليكون.

ورغم التحديات، ما يزال هناك أمل في التقدم، حيث يقول توماس ديتريش، الأستاذ الفخري لعلوم الحاسوب في جامعة ولاية أوريغون: “في الماضي، كانت التطورات التكنولوجية تتطلب من 10 إلى 20 عاما لتحقيق العوائد الكبيرة. وهذا يعني أن هناك فرصة للابتكار بشكل كبير في مجال الذكاء الاصطناعي، رغم أن العديد من الشركات قد تفشل في البداية”.

مقالات مشابهة

  • تحديات جوهرية تواجه تطور الذكاء الاصطناعي
  • بعد شهرين من الإضراب... المستشفى الجهوي ببني ملال يحل أزمة الحراس
  • تطور جديد في قضية إمام اوغلو
  • رجال الأمن يساعدون ضيوف الرحمن على ارتداء الزي السعودي في صباح العيد.. فيديو
  • تطور جديد في مفاوضات غزة.. وإسرائيل تتمسك بخطة ويتكوف
  • إنجاز رائع.. تعليق مفاجئ من جوارديولا بعد فوز مانشستر سيتي على بورنموث
  • أزمة كروية بين العراق والأردن تلوح في الأفق والمنصات تتفاعل
  • ملحمة كروية في الدوري الإنجليزي.. نوتنجهام فورست يتخطى برايتون ويصل لنصف النهائي
  • مدير إعلام الجبلاية: التنسيق غاب بين الاتحاد والرابطة في أزمة القمة
  • سيناريوهات موقف الأهلي من بطولة الدوري بعد أزمة مباراة القمة