محمد عبده يغني الكابتن ماجد عبر الذكاء الاصطناعي .. فيديو اخر خبر
تاريخ النشر: 14th, July 2023 GMT
اخر خبر، محمد عبده يغني الكابتن ماجد عبر الذكاء الاصطناعي فيديو،شهد العالم اهتمامًا كبيرًا بتقنية الذكاء الاصطناعي خلال السنوات القليلة الماضية، حتى .،عبر صحافة السعودية، حيث يهتم الكثير من الناس بمشاهدة ومتابعه الاخبار، وتصدر خبر محمد عبده يغني الكابتن ماجد عبر الذكاء الاصطناعي .. فيديو، محركات البحث العالمية و نتابع معكم تفاصيل ومعلوماته كما وردت الينا والان إلى التفاصيل.
شهد العالم اهتمامًا كبيرًا بتقنية الذكاء الاصطناعي خلال السنوات القليلة الماضية، حتى أنه استحوذت على تفكير الكثيرين فيما امتلأت مواقع التواصل الاجتماعي بالصور ومقاطع الفيديو التي تم تطويرها عبر هذه التقنية “الذكية” والتي توفر قوة معالجة موازية سريعة ودقيقة.
تقنية الذكاء الاصطناعي شهدت تطورًا كبيرًا لدرجة أنه بات بإمكان مستخدميه إنشاء مقاطع صوتية بأصوات فنانين عالميين سواء أحياء كانوا أم أموات.
والدليل على ذلك كانت إعادة طرح شارة أغنية المسلسل كابتن ماجد بصوت فنان العرب محمد عبده.
وانتشر مقطع الفيديو على مواقع التواصل الاجتماعي، كالنار في الهشيم، وكالعادة انقسمت آراء الرواد بين مؤيد ومعارض فمنهم من رأى أن النتيجة مذهلة وأبدوا إعجابهم الشديد بإحياء الأغنية بصوت محمد عبده
https://cp.slaati.com/wp-content/uploads/2023/07/فيديو-طولي-156.mp4المصدر: صحافة العرب
كلمات دلالية: الذكاء موعد عاجل الدولار الامريكي اليوم اسعار الذهب اسعار النفط مباريات اليوم جدول ترتيب حالة الطقس
إقرأ أيضاً:
الذكاء الاصطناعي مجرد وهم.. باحثون يكشفون السبب
تابع أحدث الأخبار عبر تطبيق
في تطور جديد يعيد تقييم فعالية الذكاء الاصطناعي، أعلن باحثون بإحدى شركات التكنولوجيا العملاقة أن الذكاء الاصطناعي، وخصوصًا النماذج اللغوية الكبيرة، يُظهر سلوكًا يُوحي بالذكاء ولكنه في الواقع مجرد وهم، هذه النماذج تُظهر قدرة على الاستجابة والتفاعل مع المستخدمين، إلا أنها تفتقر إلى التفكير المنطقي الحقيقي وفهم السياق العميق.
ووفقا لموقع techxplore أن الباحثون يقولون رغم التقدم الكبير الذي حققته تطبيقات الذكاء الاصطناعي، توضح دراسة باحثي شركة التكنولوجيا أن هذه التقنيات ما زالت بعيدة عن تحقيق ذكاء حقيقي، والنماذج الحالية تعتمد على تقنيات تحليل الأنماط بدلاً من الفهم العميق أو التفكير المنطقي، مما يجعلها أداة مفيدة ولكنها ليست بديلاً عن العقل البشري، ونُشر البحث عبر منصة arXiv preprint.
نقاط البحث الأساسية:
• أجريت الدراسة على نماذج لغوية كبيرة، مثل تلك المستخدمة في تطبيقات الذكاء الاصطناعي الشائعة.
• أظهرت النتائج أن هذه النماذج لا تفهم الأسئلة المطروحة فهمًا حقيقيًا، بل تعتمد على بنية الجمل والخوارزميات المكتسبة.
الفرضية الأساسية للدراسة:
افترض الباحثون أن الذكاء الحقيقي، سواء للكائنات الحية أو الآلات، يتطلب القدرة على:
1. التمييز بين المعلومات ذات الصلة وغير ذات الصلة: مثال ذلك، إذا سأل طفل والده عن عدد التفاح في حقيبة تحتوي على تفاح صغير الحجم، يمكن للعقل البشري تجاهل حجم التفاح كعامل غير ذي صلة بالإجابة.
2. إظهار التفكير المنطقي: القدرة على استخلاص الاستنتاجات الصحيحة بناءً على المعطيات المتاحة.
اختبار النماذج اللغوية الكبيرة:
• استخدم الباحثون مئات الأسئلة التي استُخدمت سابقًا لتقييم قدرة النماذج اللغوية.
• أضيفت معلومات غير ذات صلة إلى هذه الأسئلة لقياس قدرة الذكاء الاصطناعي على تجاهلها.
• النتيجة: أدى وجود معلومات زائدة إلى إرباك الذكاء الاصطناعي، مما نتج عنه إجابات خاطئة أو غير منطقية.
نتائج البحث:
1. عدم الفهم الحقيقي للسياق
النماذج اللغوية الكبيرة لا تفهم الأسئلة فهمًا عميقًا. بدلاً من ذلك، تستند إلى التعرف على الأنماط وتوليد إجابات تعتمد على البيانات السابقة.
2. إجابات مضللة
أعطت النماذج إجابات بدت صحيحة ظاهريًا، لكنها عند الفحص الدقيق تبين أنها خاطئة أو غير متسقة مع المنطق.
3. الوهم الذكي
النماذج تظهر وكأنها “تفكر” أو “تشعر”، لكنها في الواقع تعتمد على خوارزميات تعليم الآلة للتفاعل مع المستخدم، دون وجود ذكاء حقيقي أو إدراك.
أمثلة توضيحية من البحث:
• سؤال بسيط: عند طرح سؤال على الذكاء الاصطناعي يتضمن معلومات غير ضرورية، غالبًا ما يدمجها في إجابته بدلاً من تجاهلها.
• الشعور والإحساس: عند سؤال الذكاء الاصطناعي عن “شعوره” تجاه أمر معين، قد يقدم إجابات تُوحي بأنه يشعر، لكن هذه مجرد خدعة لغوية تعتمد على بيانات التدريب.
دلالات البحث:
• النتائج تعزز وجهة النظر التي ترى أن الذكاء الاصطناعي ليس “ذكاءً” حقيقيًا بالمعنى البشري، بل هو نموذج إحصائي معقد.
• تؤكد الدراسة أن الذكاء الاصطناعي الحالي غير قادر على التفكير المنطقي أو فهم السياق كما يفعل الإنسان.
التحديات المستقبلية:
• تحسين قدرة النماذج اللغوية على الفصل بين المعلومات ذات الصلة وغير ذات الصلة.
• تطوير نماذج ذكاء اصطناعي تفهم السياق بشكل أفضل وتُظهر منطقًا أقرب للإنسان.
• تقليل الاعتماد على الأنماط الإحصائية وزيادة التركيز على التفاعل الديناميكي.