لجريدة عمان:
2025-03-25@05:22:16 GMT

مشكلة حماية حقوق الذكاء الاصطناعي قابلة للحل

تاريخ النشر: 11th, December 2023 GMT

مايك لوكيدس وتيم أورايلي -

يعمل الذكاء الاصطناعي التوليدي على توسيع مدى قانون حقوق التأليف والنشر بطرق غير متوقعة وغير مريحة. أصدر مكتب حقوق التأليف والنشر في الولايات المتحدة مؤخرا توجيها ينص على أن نتاج الذكاء الاصطناعي المُوَلِّد للصور لا يحظى بحماية حقوق التأليف والنشر ما لم يدخل إبداع بشري في عمليات التلقين والأوامر الداخلة في توليده.

لكن هذا يُـغـفِـل أسئلة عديدة: ما هو مقدار الإبداع المطلوب، وهل هو من ذات النوع من الإبداع الذي يمارسه الفنان مستخدما فرشاة رسم؟

تتعامل مجموعة أخرى من الحالات مع النص (الروايات والروائيين)، حيث يزعم بعض الخبراء أن تدريب نموذج ما على مواد محمية بحقوق التأليف والنشر يُـعَـد في حد ذاته انتهاكا لحقوق التأليف والنشر، حتى لو لم تشتمل العملية على إعادة إنتاج تلك النصوص أبدا كجزء من مخرجاتها. لكن قراءة النصوص كانت جزءا من عملية التعلم البشري منذ وُجِـدَت اللغة المكتوبة. وفي حين ندفع المال لشراء الكتب، فإننا لا ندفع لنتعلم منها. كيف نفهم هذا؟ ماذا يجب أن يعني قانون حقوق التأليف والنشر في عصر الذكاء الاصطناعي؟ يقدم لنا الباحث في مجال التكنولوجيا جارون لانيير إجابة واحدة من خلال فكرته عن مكانة البيانات، التي تميز ضمنيا بين تدريب (أو «تعليم») نموذج وتوليد مخرجات باستخدام نموذج. يرى لانيير أن النشاط الأول يجب أن يكون محميا، في حين قد ينتهك الناتج بالفعل حقوق التأليف والنشر التي يملكها شخص ما. هذا التمييز جذاب لعدة أسباب. فأولا، يحمي قانون حقوق التأليف والنشر الحالي «الاستخدامات التحويلية... التي تضيف شيئا جديدا»، ومن الواضح تماما أن هذا هو ما تفعله نماذج الذكاء الاصطناعي. علاوة على ذلك، ليس الأمر كما لو أن النماذج اللغوية الضخمة (LLMs) مثل ChatGPT تحتوي على سبيل المثال على النص الكامل لروايات جورج رايـموند ريتشارد مارتن الخيالية، والتي تنسخ وتلصق منها بوقاحة. بل يتألف النموذج من مجموعة هائلة من المتغيرات والمعالم ــ استنادا إلى كل المحتوى المستوعب أثناء التدريب ــ التي تمثل احتمالية أن تتبع كلمة بعينها كلمة أخرى. عندما تُـخـرِج محركات الترجيح هذه قصيدة شكسبيرية لم يكتبها شكسبير قَـط، فإن هذه عملية تحويلية، حتى لو لم تكن القصيدة الجديدة جيدة على الإطلاق. يرى لانيير أن إنشاء نموذج أفضل هو منفعة عامة تخدم الجميع ــ حتى المؤلفين الذين تُستخدم أعمالهم لتدريب هذا النموذج. وهذا يجعلها عملية تحويلية وتستحق الحماية. لكن مفهومه لمكانة البيانات ينطوي على مشكلة (وهو ما يعترف به تماما): فمن المستحيل التمييز حقا بين «تدريب» نماذج الذكاء الاصطناعي الحالية و»توليد الناتج» بأسلوب الروائية جيسمين وارد على سبيل المثال.

يعمل مطورو الذكاء الاصطناعي على تدريب النماذج من خلال إعطائها قطع أصغر من المدخلات ومطالبتها بالتنبؤ بالكلمة التالية مليارات المرات، مع تعديل المؤشرات والمعالم قليلا على طول الطريق لتحسين التوقعات. لكن ذات العملية تُـسـتَـخـدَم بعد ذلك لتوليد الناتج، وهنا تكمن المشكلة من منظور حقوق التأليف والنشر.

يبدأ النموذج الذي يُطلب منه أن يكتب مثل شكسبير بكلمة «To»، مما يزيد قليلا من احتمالية أن يتبعها بكلمة «be»، وهذا بدوره يزيد قليلا من احتمالية أن تكون الكلمة التالية «or» ــ وهلم جرا. ولكن حتى مع ذلك، يظل من المستحيل ربط هذا الناتج مرة أخرى ببيانات التدريب. من أين جاءت كلمة «or»؟ في حين تصادف أنها الكلمة التالية في مناجاة هاملت الشهيرة، فإن النموذج لم يكن يحاكي هاملت. لقد اختار ببساطة كلمة «or» من بين مئات الآلاف من الكلمات التي كان بإمكانه اختيار أي منها، وكل ذلك بناء على إحصائيات. هذا ليس ما نعتبره نحن البشر إبداعا. يعمل هذا النموذج ببساطة على تعظيم احتمالية أن نجد نحن البشر ناتجه مفهوما. ولكن كيف يمكن إذا تعويض المؤلفين عن أعمالهم عندما يكون ذلك مناسبا؟ في حين قد لا يكون من الممكن تتبع المصدر باستخدام روبوتات الدردشة الحالية المعتمدة على الذكاء الاصطناعي التوليدي، فإن هذه ليست نهاية القصة.

خلال العام أو نحو ذلك الذي مَـرّ منذ إصدار ChatGPT، كان المطورون عاكفين على بناء تطبيقات إضافية على نماذج الأساس القائمة. ويستخدم كثيرون التوليد المعزز بالاسترجاع (RAG) للسماح للذكاء الاصطناعي «بالتعرف على» محتوى غير موجود في بيانات تدريبه. إذا كنت في احتياج إلى توليد نص لكتالوج مُـنـتَـج ما، فيمكنك تحميل بيانات شركتك ثم إرسالها إلى نموذج الذكاء الاصطناعي مع التعليمات: «استخدم فقط البيانات الواردة في هذا الطلب للرد». برغم أن التوليد المعزز بالاسترجاع مصمم كطريقة لاستخدام معلومات الـمِـلكية دون المرور بعملية التدريب التي تتطلب عمالة وحوسبة مكثفة، فإنه ينشئ أيضا بشكل تلقائي صِـلة بين استجابة النموذج والمستندات التي جرى إنشاء الاستجابة بالاستعانة بها. هذا يعني أننا أصبحنا الآن نمتلك مصدرا، وهو ما يقربنا كثيرا من تحقيق رؤية لانيير بشأن مكانة البيانات. إذا نشرنا برنامجا لتحويل العملات أنشأه مبرمج بشري في كتاب، وعمل نموذجنا اللغوي على إعادة إنتاجه ردا على سؤال، فيمكننا عزو ذلك إلى المصدر الأصلي وتخصيص حقوق التأليف على النحو اللائق. ينطبق الأمر ذاته على رواية مولدة بواسطة الذكاء الاصطناعي ومكتوبة بأسلوب جيسمين وارد (الممتاز)، في روايتها بعنوان «Sing, Unburied, Sing». تعد ميزة «النظرة العامة المعززة بالذكاء الاصطناعي» من Google مثالا جيدا لما يمكننا توقعه من التوليد المعزز بالاسترجاع. ولأن شركة Google تمتلك بالفعل أفضل محرك بحث في العالم، فيجب أن يكون محرك التلخيص الذي أنتجته قادرا على الاستجابة لأي طلب عن طريق إجراء بحث وإدخال أهم النتائج في النماذج اللغوية الضخمة لتوليد النظرة العامة التي طلبها المستخدم. يوفر النموذج اللغة والقواعد، لكنه يستمد المحتوى من المستندات المضمنة في الطلب الموجه. ومرة أخرى، هذا من شأنه أن يوفر المصدر المفقود. الآن بعد أن علمنا أنه من الممكن إنتاج مخرجات تحترم حقوق التأليف والنشر وتعوض المؤلفين، يتعين على الجهات التنظيمية أن تكثف جهودها لتحميل الشركات المسؤولية عن تقاعسها عن القيام بذلك، تماما كما تتحمل المسؤولية عن خطاب الكراهية وغيره من أشكال المحتوى غير اللائق. لا ينبغي لنا أن نقبل ادعاء كبار مقدمي خدمات النماذج اللغوية الضخمة بأن المهمة مستحيلة من الناحية الفنية. إنه في حقيقة الأمر مجرد تحد آخر من تحديات نماذج الأعمال والتحديات الأخلاقية الكثيرة التي يمكنهم، بل يتعين عليهم، التغلب عليها.

علاوة على ذلك، يقدم التوليد المعزز بالاسترجاع أيضا حلا جزئيا على الأقل لمشكلة «هلوسة» الذكاء الاصطناعي الحالية. إذا اسـتُـخـدِم أحد التطبيقات (مثل بحث جوجل) لتزويد نموذج ما بالبيانات اللازمة لبناء استجابة، تصبح احتمالية توليده لشيء خاطئ تماما أقل كثيرا مما لو كان يعتمد على بيانات تدريبه فحسب. وبالتالي يصبح من الممكن جعل ناتج الذكاء الاصطناعي أكثر دقة إذا اقتصر على مصادر معروفة بأنها جديرة بالثقة. لقد بدأنا للتو نرى ما يمكن إنتاجه بالاستعانة بهذا النهج. لا شك أن تطبيقات التوليد المعزز بالاسترجاع سوف تحتوي على طبقات أكثر تعددا وتزداد تعقيدا. ولكن الآن بعد أن أصبح لدينا الأدوات اللازمة لتتبع المصدر، لم يعد لدى شركات التكنولوجيا أي عذر يحول دون مساءلتها بشأن حقوق التأليف والنشر.

مايك لوكيدس نائب رئيس إستراتيجية المحتوى في شركة «O«Reilly Media

تيم أورايلي المؤسس والرئيس التنفيذي لشركة« O«Reilly Media وهو أستاذ زائر في معهد كلية لندن الجامعية للابتكار.

خدمة بروجيكت سنديكيت

المصدر: لجريدة عمان

كلمات دلالية: الذکاء الاصطناعی فی حین

إقرأ أيضاً:

الذكاء الاصطناعي يساعد في الكشف عن علاج سرطان نادر

اكتشف باحثون، بمساعدة الذكاء الاصطناعي، هدفًا علاجيًا واعدًا لسرطان الغدد الكيسية، وهو نوع نادر من سرطان الغدد اللعابية يتمتع بخيارات علاجية محدودة.
نُشرت دراسة الباحثين في مجلة "أبحاث السرطان التجريبية والسريرية"، وفقا لموقع "مديكال إكسبرس".
أجريت الدراسة من قبل باحثين من مركز السرطان الشامل في جامعة شيكاغو الطبية، بالتعاون مع علماء آخرين. وجدت الباحثون أن تثبيط نشاط بروتين أرجينين ميثيل ترانسفيراز 5 (PRMT5) يُعد استراتيجية علاجية محتملة ضد سرطان الغدد الكيسية.
يمثل هذا السرطان ما بين 1% و5% فقط من سرطانات الرأس والرقبة، و25% و35% من أورام الغدد اللعابية.
أوضح الدكتور يفغيني إيزومتشينكو، أستاذ الطب المساعد في جامعة شيكاغو أن "المرض بحد ذاته نادر جدًا، مما يجعل دراسته صعبة للغاية". وأكد أنه بالإضافة إلى ندرته، يصعب أيضًا اكتشافه مبكرًا لأن المرضى لا تظهر عليهم الأعراض إلا بعد تطوره بشكل ملحوظ.
وأضاف إيزومتشينكو "لا يُعرف الكثير عن هذا المرض، ولا عن كيفية علاجه، ولا توجد سجلات وفيرة للمرضى الذين عولجوا منه، بحيث يمكن الرجوع إليها لتحديد النهج الأمثل للعلاج".
ونظرًا لنقص العلاجات الموجهة لسرطان الغدد الكيسية، لجأ الفريق إلى الذكاء الاصطناعي، الذي يكتسب زخمًا في اكتشاف أهداف علاجية جديدة.
باستخدام أداة اكتشاف تنبؤي قائمة على الذكاء الاصطناعي، حلل الفريق بيانات التعبير الجيني من 87 عينة من أورام سرطان الغدد الكيسية و35 عينة مطابقة من عينات طبيعية لتحديد أهداف دوائية محتملة.
اقرأ أيضا... الذكاء الاصطناعي يكتشف أدوية قد تبطئ أمراض التدهور المعرفي
من بين أبرز المرشحين للعلاج، جاء بروتين أرجينين ميثيل ترانسفيراز 5 (PRMT5)، وهو إنزيم مشارك في التنظيم الجيني (تغيير التعبير الجيني ونشاط البروتين دون تغيير تسلسل الحمض النووي نفسه)، ومعروف بدوره في تطور السرطان.
بمجرد تحديد بروتين أرجينين ميثيل ترانسفيراز 5 كهدف واعد للعلاج، تعاون الباحثون مع شركة Prelude Therapeutics، وهي شركة طورت مثبطًا انتقائيًا للغاية للبروتين PRMT5 يُسمى PRT543. قيّم الباحثون المثبط PRT543 في النماذج الخلوية والحيوانية، بما في ذلك سلالات خلايا سرطان الغدد الكيسية (خلايا مشتقة من أنسجة سرطانية)، والعضيات (نماذج أورام ثلاثية الأبعاد مشتقة من عينات المرضى)، وزراعة الخلايا الغريبة المشتقة من المرضى، وهي أورام بشرية مزروعة في الفئران.
أوضح إيزومتشينكو "تُعدّ العضيات أفضل لتقييم استجابة الدواء لأنها تُمثّل التركيب الجيني للسرطان بشكل أفضل مقارنةً بالسلالات الخلوية. فهي تمنحك ثقة أكبر في فعالية مركّبك، لأنك تُثبّط الخلايا نفسها التي تُحفّز تطوّر السرطان".
أظهرت النتائج أن تثبيط البروتين PRMT5 كبح نمو الورم بشكل ملحوظ عبر نماذج ما قبل سريرية متعددة، مما أدى إلى تثبيط الجينات الرئيسية المرتبطة بسرطان الغدد الكيسية.
كما بدا العلاج فعّالاً بغض النظر عمّا إذا كانت الأورام تحمل طفرات في الجين NOTCH1، وهو جين مرتبط بسرطان الغدد الكيسية الأكثر عدوانية.
وأظهرت التجارب السريرية السابقة أن مثبطات PRMT5 تُظهر نشاطًا مضادًا للأورام في أنواع مختلفة من السرطان، إلا أن فعاليتها في سرطان الغدد الكيسية لم تُستكشف بالكامل حتى الآن.
قال إيزومتشينكو "وجدنا أنه على الرغم من فعالية الدواء، إلا أنه ليس دواءً خارقًا. فهو يثبط الأورام ويُقلص حجمها، ويُظهر تأثيرات على سلالات الخلايا، والعضيات، لكنه لا يُعالج المرض".
للوصول إلى شفاء حقيقي، استكشف الباحثون علاجات مركبة محتملة لتعزيز فعالية المثبط PRT543.
وأوضح إيزومتشينكو "في الوقت الحالي، في علاج السرطان، يُعد التركيب هو الكلمة المفتاحية. إذ يتم دمج عدة أدوية معًا لتثبيط مسارات رئيسية، ونأمل أن يكون لدمج دواءين أو ثلاثة معًا تأثير أفضل من كل دواء على حدة".
استكشف الفريق أدوية معتمدة بالفعل للأورام الصلبة، وحددوا "لينفاتينيب" كشريك محتمل. وقد أدى العلاج المركب إلى تأثير مثبط أقوى على نمو الورم في المختبر.
واستُخدمت مجموعة من مرضى جامعة شيكاغو، في دراسة الباحثين. تشير النتائج إلى أن استهداف إشارات البروتين PRMT5 بالتزامن مع "لينفاتينيب" قد يكون استراتيجية واعدة للمرضى.
وأشار إيزومتشينكو إلى أن "المرضى الذين يحملون بصمة جزيئية معينة مرشحون محتملون للعلاج المركب".
تسلط هذه الدراسة الضوء على التحول نحو علاجات أكثر تخصيصًا واستهدافًا لعلاج السرطان. فتطوير دواء قادر على تثبيط الأورام بشكل محدد ومستهدف أمر مثير للاهتمام. حتى لو لم يكن الدواء فعالاً كعلاج وحيد، فبدمجه مع جرعة أقل من العلاج الكيميائي، يمكن للمريض الاستفادة مع تقليل الآثار الجانبية، كما قال إيزومتشينكو.

أخبار ذات صلة بعد أسابيع في المستشفى.. البابا فرنسيس يعود إلى الفاتيكان أنثروبيك تضيف ميزة البحث على الإنترنت إلى منصة كلود المصدر: الاتحاد - أبوظبي

مقالات مشابهة

  • هل تغيّر أدوات الذكاء الاصطناعي وجه السياحة والفنادق؟
  • Gmail يطور ميزة البحث .. الذكاء الاصطناعي يحدد ما تحتاجه أولا
  • الذكاء الاصطناعي… أهو باب لمستقبل واعد أم مدخل إلى المجهول؟
  • الذكاء الاصطناعي يساعد في الكشف عن علاج سرطان نادر
  • الذكاء الاصطناعي يحرر أول صحيفة مطبوعة دون تدخل بشري
  • في عصر الذكاء «الذكاء الاصطناعي».. هل يوجد «كلمات مرور» آمنة!
  • جدة.. "الداخلية" تستعرض الذكاء الاصطناعي في إدارة الحشود
  • هل يجعلك الذكاء الاصطناعي أقل ذكاءً؟ اكتشف الحقيقة الصادمة!
  • إمكانيات مميزة في «معالجة البيانات».. إطلاق أحدث نماذج «الذكاء الاصطناعي»
  • ما هي نماذج الذكاء الاصطناعي الصينية المتاحة حاليا؟